Skip to main content

Tissue Engineering and New Biomaterials

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Tissue engineering became one of the hot topics of medicine just after the review article by Langer and Vacanti in 1993 with title “Tissue Engineering,” and today tissue engineering is known to be a multidisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ [1]. The strategies of tissue engineering or in other words “regenerative medicine” require both relation and communication of cells with tissue by signaling pathways [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  PubMed  Google Scholar 

  2. Bell E. Tissue engineering: current perspectives. Boston: Birkhauser; 1993.

    Book  Google Scholar 

  3. Howard D, Buttery LD, Shakesheff KM, et al. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213:66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3:589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bajaj P, Schweller RM, Khademhosseini A, et al. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014;16:247–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. J Eur Spine. 2008;17:467–79.

    Article  CAS  Google Scholar 

  7. Robert L. Matrix biology: past-present and future. Pathol Biol (Paris). 2001;49(4):279–83.

    Article  CAS  Google Scholar 

  8. Seo SJ, Mahapatra C, Singh RK, et al. Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng. 2014;5:1–14.

    Article  Google Scholar 

  9. Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000;3(23–24):9.

    Google Scholar 

  10. Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.

    Article  CAS  PubMed  Google Scholar 

  12. Brown BN, Badylak SF. The role of the host immune response in tissue engineering and regenerative medicine. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. 4th ed., Chap. 25. Amsterdam: Elsevier; 2014. p. 497–509.

    Google Scholar 

  13. Koo H, Yamada KM. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol. 2016;42:102–12.

    Article  CAS  PubMed  Google Scholar 

  14. Hu WJ, Eaton JW, Ugarova TP, et al. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231–8.

    Article  CAS  PubMed  Google Scholar 

  15. McNally AK, Anderson JM. Macrophage fusion and multinucleated giant cells of inflammation. Adv Exp Med Biol. 2011;713:97–111.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  17. Ochi M. Shinya Yamanaka’s 2012 Nobel prize and the radical change in orthopedic strategy thanks to his discovery of IPS cells. Acta Orthop. 2013;84(1):1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Murphy K, Travers P, Walport M, et al. Janeway’s immunobiology. 7th ed. New York: Garland Science; 2008.

    Google Scholar 

  19. Bartaula-Brevik S, Pedersen TO, Finne-Wistrand A, et al. Angiogenic and immunomodulatory properties of endothelial and mesenchymal stem cells. Tissue Eng Part A. 2016;22(3–4):244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kargozar S, Mozafari M, Hashemian SJ, et al. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton’s jelly, and adipose tissue. J Biomed Mater Res Appl Biomater. 2016;2016(15):1002.

    Google Scholar 

  21. Wang MO, Fisher JP. Signal expression in engineered tissues. In: Bronzino JD, Peterson DR, editors. Molecular, cellular and tissue engineering. The biomedical engineering handbook. 4th edn. Boca Raton: CRC Press; 2015. p. 45.4–5.

    Google Scholar 

  22. Petreaca M, Martins-Green M. The dynamics of cell-ECM interactions with implications for tissue engineering. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. 4th ed., Chap. 9. Amsterdam: Elsevier; 2014. p. 175–80.

    Google Scholar 

  23. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17(2):153–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Karahan or Rustu Nuran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Karahan, M., Nuran, R. (2017). Tissue Engineering and New Biomaterials. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics