Skip to main content

Overview of Orthobiology and Biomechanics

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Please provide affiliation for the authors “Jorge Chahla”; “Robert F. LaPrade”; “Mark Cinque”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63. doi:10.1177/0363546508328414.

    Article  PubMed  Google Scholar 

  2. Jorgensen C, Noel D. Mesenchymal stem cells in osteoarticular diseases. Regen Med. 2011;6(6 Suppl):44–51. doi:10.2217/rme1180.

    Article  CAS  PubMed  Google Scholar 

  3. Jorgensen C, Djouad F, Bouffi C, Mrugala D, Noel D. Multipotent mesenchymal stromal cells in articular diseases. Best Pract Res Clin Rheumatol. 2008;22(2):269–84. doi:10.1016/jberh200801005.

    Article  CAS  PubMed  Google Scholar 

  4. Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum. 2016; doi:10.1016/jsemarthrit201607013.

    PubMed  Google Scholar 

  5. Hootman JM, Helmick CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum. 2006;54(1):226–9. doi:10.1002/art21562.

    Article  PubMed  Google Scholar 

  6. Sugaya K. Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. Int Rev Cytol. 2003;228:1–30.

    Article  PubMed  Google Scholar 

  7. Co C, Vickaryous MK, Koch TG. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro. Osteoarthr Cartil. 2014;22(3):472–80. doi:10.1016/jjoca201312021.

    Article  CAS  PubMed  Google Scholar 

  8. Hsu WK, Mishra A, Rodeo SR, Fu F, Terry MA, Randelli P, et al. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. J Am Acad Orthop Surg. 2013;21(12):739–48. doi:10.5435/jaaos-21-12-739.

    PubMed  Google Scholar 

  9. LaPrade RF, Geeslin AG, Murray IR, Musahl V, Zlotnicki JP, Petrigliano F, et al. Biologic treatments for sports injuries II think tank-current concepts, future research, and barriers to advancement, part 1: biologics overview, ligament injury, tendinopathy. Am J Sports Med. 2016; doi:10.1177/0363546516634674.

    Google Scholar 

  10. Zhu Y, Yuan M, Meng HY, Wang AY, Guo QY, Wang Y, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil. 2013;21(11):1627–37. doi:10.1016/jjoca201307017.

    Article  CAS  PubMed  Google Scholar 

  11. Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy—future or trend? Arthritis Res Ther. 2012;14(4):219. doi:10.1186/ar3914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rughetti A, Giusti I, D’Ascenzo S, Leocata P, Carta G, Pavan A, et al. Platelet gel-released supernatant modulates the angiogenic capability of human endothelial cells. Blood Transfus. 2008;6(1):12–7.

    PubMed  PubMed Central  Google Scholar 

  14. Fleming BC, Proffen BL, Vavken P, Shalvoy MR, Machan JT, Murray MM. Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1161–70. doi:10.1007/s00167-014-2932-6.

    Article  PubMed  Google Scholar 

  15. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37(11):2259–72. doi:10.1177/0363546509349921.

    Article  PubMed  Google Scholar 

  16. Italiano Jr JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33. doi:10.1182/blood-2007-09-113837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murray IR, LaPrade RF, Musahl V, Geeslin AG, Zlotnicki JP, Mann BJ, et al. Biologic treatments for sports injuries II think tank-current concepts, future research, and barriers to advancement, part 2: rotator cuff. Orthop J Sports Med. 2016;4(3):2325967116636586. doi:10.1177/2325967116636586.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rai MF, Sandell LJ. Regeneration of articular cartilage in healer and non-healer mice. Matrix Biol. 2014;39:50–5. doi:10.1016/jmatbio201408011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cavallo C, Filardo G, Mariani E, Kon E, Marcacci M, Pereira Ruiz MT, et al. Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro study. J Bone Joint Surg Am. 2014;96(5):423–9. doi:10.2106/jbjsm00726.

    Article  PubMed  Google Scholar 

  20. Filardo G, Kon E, Pereira Ruiz MT, Vaccaro F, Guitaldi R, Di Martino A, et al. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single- versus double-spinning approach. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):2082–91. doi:10.1007/s00167-011-1837-x.

    Article  PubMed  Google Scholar 

  21. Dragoo JL, Braun HJ, Durham JL, Ridley BA, Odegaard JI, Luong R, et al. Comparison of the acute inflammatory response of two commercial platelet-rich plasma systems in healthy rabbit tendons. Am J Sports Med. 2012;40(6):1274–81. doi:10.1177/0363546512442334.

    Article  PubMed  Google Scholar 

  22. Di Matteo B, Kon E, Filardo G. Intra-articular platelet-rich plasma for the treatment of osteoarthritis. Ann Transl Med. 2016;4(3):63. doi:10.3978/jissn2305-583920160118.

    PubMed  PubMed Central  Google Scholar 

  23. Elford PR, Lamberts SW. Contrasting modulation by transforming growth factor-beta-1 of insulin-like growth factor-I production in osteoblasts and chondrocytes. Endocrinology. 1990;127(4):1635–9. doi:10.1210/endo-127-4-1635.

    Article  CAS  PubMed  Google Scholar 

  24. Song K, Wang H, Krebs TL, Danielpour D. Novel roles of Akt and mTOR in suppressing TGF-β/ALK5-mediated Smad3 activation. EMBO J. 2006;25(1):58–69. doi:10.1038/sjemboj7600917.

    Article  CAS  PubMed  Google Scholar 

  25. Ekdahl M, Wang JH, Ronga M, Fu FH. Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(10):935–47. doi:10.1007/s00167-008-0584-0.

    Article  PubMed  Google Scholar 

  26. Chen CH. Graft healing in anterior cruciate ligament reconstruction. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):21. doi:10.1186/1758-2555-1-21.

    PubMed  PubMed Central  Google Scholar 

  27. Silva A, Sampaio R. Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing? Knee Surg Sports Traumatol Arthrosc. 2009;17(6):676–82. doi:10.1007/s00167-009-0762-8.

    Article  PubMed  Google Scholar 

  28. Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M. PRP augmentation for ACL reconstruction. Biomed Res Int. 2015;2015:371746. doi:10.1155/2015/371746.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Griffin JW, Hadeed MM, Werner BC, Diduch DR, Carson EW, Miller MD. Platelet-rich plasma in meniscal repair: does augmentation improve surgical outcomes? Clin Orthop Relat Res. 2015;473(5):1665–72. doi:10.1007/s11999-015-4170-8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Anderson NA, Gray S, Copplestone JA, Chan DC, Hamon M, Prentice AG, et al. A prospective randomized study of three types of platelet concentrates in patients with haematological malignancy: corrected platelet count increments and frequency of nonhaemolytic febrile transfusion reactions. Transfus Med. 1997;7(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  31. Scarpone M, Rabago D, Snell E, Demeo P, Ruppert K, Pritchard P, et al. Effectiveness of platelet-rich plasma injection for rotator cuff tendinopathy: a prospective open-label study. Glob Adv Health Med. 2013;2(2):26–31. doi:10.7453/gahmj2012054.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ersen A, Demirhan M, Atalar AC, Kapicioglu M, Baysal G. Platelet-rich plasma for enhancing surgical rotator cuff repair: evaluation and comparison of two application methods in a rat model. Arch Orthop Trauma Surg. 2014;134(3):405–11. doi:10.1007/s00402-013-1914-3.

    Article  PubMed  Google Scholar 

  33. Zhao JG. Platelet-rich plasma in arthroscopic rotator cuff repair. Arthroscopy. 2015;31(4):597–8. doi:10.1016/jarthro201502002.

    Article  PubMed  Google Scholar 

  34. Creaney L. Platelet-rich plasma for treatment of Achilles tendinopathy. JAMA. 2010;303(17):1696. doi:10.1001/jama2010519.author reply 1697–8

    Article  CAS  PubMed  Google Scholar 

  35. de Vos RJ, Weir A, van Schie HT, Bierma-Zeinstra SM, Verhaar JA, Weinans H, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144–9. doi:10.1001/jama20091986.

    Article  PubMed  Google Scholar 

  36. de Jonge S, de Vos RJ, Weir A, van Schie HT, Bierma-Zeinstra SM, Verhaar JA, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med. 2011;39(8):1623–9. doi:10.1177/0363546511404877.

    Article  PubMed  Google Scholar 

  37. Aspenberg P. Platelet concentrates and Achilles tendon healing. J Orthop Res. 2013;31(9):1500. doi:10.1002/jor22402.

    Article  PubMed  Google Scholar 

  38. Alsousou J, Thompson M, Harrison P, Willett K, Franklin S. Effect of platelet-rich plasma on healing tissues in acute ruptured Achilles tendon: a human immunohistochemistry study. Lancet. 2015;385(Suppl 1):S19. doi:10.1016/S0140-6736(15)60334-8.

    Article  PubMed  Google Scholar 

  39. Hartmann EK, Heintel T, Morrison RH, Weckbach A. Influence of platelet-rich plasma on the anterior fusion in spinal injuries: a qualitative and quantitative analysis using computer tomography. Arch Orthop Trauma Surg. 2010;130(7):909–14. doi:10.1007/s00402-009-1015-5.

    Article  PubMed  Google Scholar 

  40. Sys J, Weyler J, Van Der Zijden T, Parizel P, Michielsen J. Platelet-rich plasma in mono-segmental posterior lumbar interbody fusion. Eur Spine J. 2011;20(10):1650–7. doi:10.1007/s00586-011-1897-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tarantino R, Donnarumma P, Mancarella C, Rullo M, Ferrazza G, Barrella G, et al. Posterolateral arthrodesis in lumbar spine surgery using autologous platelet-rich plasma and cancellous bone substitute: an osteoinductive and osteoconductive effect. Glob Spine J. 2014;4(3):137–42. doi:10.1055/s-0034-1376157.

    Article  Google Scholar 

  42. Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, Harrison JR, Gribbin CK, LaSalle EE, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PM R. 2016;8(1):1–10. doi:10.1016/jpmrj201508010.

    Article  PubMed  Google Scholar 

  43. Thanasas C, Papadimitriou G, Charalambidis C, Paraskevopoulos I, Papanikolaou A. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis: a randomized controlled clinical trial. Am J Sports Med. 2011;39(10):2130–4. doi:10.1177/0363546511417113.

    Article  PubMed  Google Scholar 

  44. Mishra AK, Skrepnik NV, Edwards SG, Jones GL, Sampson S, Vermillion DA, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014;42(2):463–71. doi:10.1177/0363546513494359.

    Article  PubMed  Google Scholar 

  45. Raeissadat SA, Rayegani SM, Hassanabadi H, Rahimi R, Sedighipour L, Rostami K. Is platelet-rich plasma superior to whole blood in the management of chronic tennis elbow: one year randomized clinical trial. BMC Sports Sci Med Rehabil. 2014;6:12. doi:10.1186/2052-1847-6-12.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Raeissadat SA, Sedighipour L, Rayegani SM, Bahrami MH, Bayat M, Rahimi R. Effect of platelet-rich plasma (PRP) versus autologous whole blood on pain and function improvement in tennis elbow: a randomized clinical trial. Pain Res Treat. 2014;2014:191525. doi:10.1155/2014/191525.

    PubMed  PubMed Central  Google Scholar 

  47. Ford RD, Schmitt WP, Lineberry K, Luce P. A retrospective comparison of the management of recalcitrant lateral elbow tendinosis: platelet-rich plasma injections versus surgery. Hand (N Y). 2015;10(2):285–91. doi:10.1007/s11552-014-9717-8.

    Article  Google Scholar 

  48. Sampson S, Reed M, Silvers H, Meng M, Mandelbaum B. Injection of platelet-rich plasma in patients with primary and secondary knee osteoarthritis: a pilot study. Am J Phys Med Rehabil. 2010;89(12):961–9. doi:10.1097/PHM0b013e3181fc7edf.

    Article  PubMed  Google Scholar 

  49. Dhillon M, Patel S, Bali K. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):863–4. author reply 5–6 doi:10.1007/s00167-010-1339-2.

    Article  PubMed  Google Scholar 

  50. Filardo G, Kon E, Buda R, Timoncini A, Di Martino A, Cenacchi A, et al. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):528–35. doi:10.1007/s00167-010-1238-6.

    Article  PubMed  Google Scholar 

  51. Wang-Saegusa A, Cugat R, Ares O, Seijas R, Cusco X, Garcia-Balletbo M. Infiltration of plasma rich in growth factors for osteoarthritis of the knee short-term effects on function and quality of life. Arch Orthop Trauma Surg. 2011;131(3):311–7. doi:10.1007/s00402-010-1167-3.

    Article  PubMed  Google Scholar 

  52. Rayegani SM, Raeissadat SA, Taheri MS, Babaee M, Bahrami MH, Eliaspour D, et al. Does intra articular platelet rich plasma injection improve function, pain and quality of life in patients with osteoarthritis of the knee? A randomized clinical trial. Orthop Rev (Pavia). 2014;6(3):5405. doi:10.4081/or20145405.

    Article  Google Scholar 

  53. Angoorani H, Mazaherinezhad A, Marjomaki O, Younespour S. Treatment of knee osteoarthritis with platelet-rich plasma in comparison with transcutaneous electrical nerve stimulation plus exercise: a randomized clinical trial. Med J Islam Repub Iran. 2015;29:223.

    PubMed  PubMed Central  Google Scholar 

  54. Raeissadat SA, Rayegani SM, Hassanabadi H, Fathi M, Ghorbani E, Babaee M, et al. Knee osteoarthritis injection choices: platelet- rich plasma (PRP) versus hyaluronic acid (a one-year randomized clinical trial). Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:1–8. doi:10.4137/cmamds17894.

    PubMed  PubMed Central  Google Scholar 

  55. Sanchez M, Guadilla J, Fiz N, Andia I. Ultrasound-guided platelet-rich plasma injections for the treatment of osteoarthritis of the hip. Rheumatology (Oxford). 2012;51(1):144–50. doi:10.1093/rheumatology/ker303.

    Article  CAS  Google Scholar 

  56. Battaglia M, Guaraldi F, Vannini F, Rossi G, Timoncini A, Buda R, et al. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics. 2013;36(12):e1501–8.

    Article  PubMed  Google Scholar 

  57. Dallari D, Stagni C, Rani N, Sabbioni G, Pelotti P, Torricelli P, et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med. 2016; doi:10.1177/0363546515620383.

    Google Scholar 

  58. Campbell KA, Saltzman BM, Mascarenhas R, Khair MM, Verma NN, Bach Jr BR, et al. Does intra-articular platelet-rich plasma injection provide clinically superior outcomes compared with other therapies in the treatment of knee osteoarthritis? A systematic review of overlapping meta-analyses. Arthroscopy. 2015;31(11):2213–21. doi:10.1016/jarthro201503041.

    Article  PubMed  Google Scholar 

  59. Sundman EA, Cole BJ, Karas V, Della Valle C, Tetreault MW, Mohammed HO, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med. 2014;42(1):35–41. doi:10.1177/0363546513507766.

    Article  PubMed  Google Scholar 

  60. Vogrin M, Rupreht M, Crnjac A, Dinevski D, Krajnc Z, Recnik G. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschr. 2010;122(Suppl 2):91–5. doi:10.1007/s00508-010-1340-2.

    Article  CAS  PubMed  Google Scholar 

  61. Radice F, Yanez R, Gutierrez V, Rosales J, Pinedo M, Coda S. Comparison of magnetic resonance imaging findings in anterior cruciate ligament grafts with and without autologous platelet-derived growth factors. Arthroscopy. 2010;26(1):50–7. doi:10.1016/jarthro200906030.

    Article  PubMed  Google Scholar 

  62. Cervellin M, de Girolamo L, Bait C, Denti M, Volpi P. Autologous platelet-rich plasma gel to reduce donor-site morbidity after patellar tendon graft harvesting for anterior cruciate ligament reconstruction: a randomized, controlled clinical study. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):114–20. doi:10.1007/s00167-011-1570-5.

    Article  CAS  PubMed  Google Scholar 

  63. Murray MM, Palmer M, Abreu E, Spindler KP, Zurakowski D, Fleming BC. Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res. 2009;27(5):639–45. doi:10.1002/jor20796.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nin JR, Gasque GM, Azcarate AV, Beola JD, Gonzalez MH. Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy. 2009;25(11):1206–13. doi:10.1016/jarthro200906002.

    Article  PubMed  Google Scholar 

  65. Kon E, Filardo G, Di Matteo B, Marcacci M. PRP for the treatment of cartilage pathology. Open Orthop J. 2013;7:120–8. doi:10.2174/1874325001307010120.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  67. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002;30(8):879–86.

    Article  CAS  PubMed  Google Scholar 

  68. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320(3):914–9. doi:10.1016/jbbrc200406029.

    Article  CAS  PubMed  Google Scholar 

  69. Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016; doi:10.1007/s00167-016-3981-9.

    PubMed  Google Scholar 

  70. Wehling P, Moser C, Frisbie D, McIlwraith CW, Kawcak CE, Krauspe R, et al. Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs. 2007;21(5):323–32.

    Article  CAS  PubMed  Google Scholar 

  71. Stein BE, Stroh DA, Schon LC. Outcomes of acute Achilles tendon rupture repair with bone marrow aspirate concentrate augmentation. Int Orthop. 2015;39(5):901–5. doi:10.1007/s00264-015-2725-7.

    Article  PubMed  Google Scholar 

  72. Kanazawa T, Soejima T, Noguchi K, Tabuchi K, Noyama M, Nakamura K, et al. Tendon-to-bone healing using autologous bone marrow-derived mesenchymal stem cells in ACL reconstruction without a tibial bone tunnel—a histological study. Muscles Ligaments Tendons J. 2014;4(2):201–6.

    PubMed  PubMed Central  Google Scholar 

  73. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med. 2016;4(1):2325967115625481. doi:10.1177/2325967115625481.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86-A(7):1541–58.

    Article  PubMed  Google Scholar 

  75. Muschler GF, Midura RJ, Nakamoto C. Practical modeling concepts for connective tissue stem cell and progenitor compartment kinetics. J Biomed Biotechnol. 2003;2003(3):170–93. doi:10.1155/s1110724303209165.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Patel J, Wong HY, Wang W, Alexis J, Shafiee A, Stevenson AJ, et al. Self-renewal and high proliferative colony forming capacity of late-outgrowth endothelial progenitors is regulated by cyclin-dependent kinase inhibitors driven by notch signaling. Stem Cells. 2016;34(4):902–12. doi:10.1002/stem2262.

    Article  CAS  PubMed  Google Scholar 

  77. Gerson SL. Mesenchymal stem cells: no longer second class marrow citizens. Nat Med. 1999;5(3):262–4. doi:10.1038/6470.

    Article  CAS  PubMed  Google Scholar 

  78. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Marcucio RS, Nauth A, Giannoudis PV, Bahney C, Piuzzi NS, Muschler G, et al. Stem cell therapies in orthopaedic trauma. J Orthop Trauma. 2015;29(Suppl 12):S24–7. doi:10.1097/bot0000000000000459.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chahla J, Piuzzi NS, Mitchell JJ, Dean CS, Pascual-Garrido C, LaPrade RF, et al. Intra-articular cellular therapy injection for knee osteoarthritis and focal cartilage defects. J Bone Joint Surg. 2016;98:1511–21.

    Article  PubMed  Google Scholar 

  81. Chahla J, Piuzzi NS, Mitchell JJ, Dean CS, Pascual-Garrido C, LaPrade RF, et al. Intra-articular cellular therapy for osteoarthritis and focal cartilage defects of the knee: a systematic review of the literature and study quality analysis. J Bone Joint Surg Am. 2016;98(18):1511–21. doi:10.2106/jbjs1501495.

    Article  PubMed  Google Scholar 

  82. Muschler GF, Midura RJ. Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res. 2002;395:66–80.

    Article  Google Scholar 

  83. Scotti C, Gobbi A, Karnatzikos G, Martin I, Shimomura K, Lane JG, et al. Cartilage repair in the inflamed joint: considerations for biological augmentation toward tissue regeneration. Tissue Eng Part B Rev. 2016;22(2):149–59. doi:10.1089/tenTEB20150297.

    Article  CAS  PubMed  Google Scholar 

  84. DuRaine GD, Arzi B, Lee JK, Lee CA, Responte DJ, Hu JC, et al. Biomechanical evaluation of suture-holding properties of native and tissue-engineered articular cartilage. Biomech Model Mechanobiol. 2015;14(1):73–81. doi:10.1007/s10237-014-0589-1.

    Article  CAS  PubMed  Google Scholar 

  85. Farhadi J, Fulco I, Miot S, Wirz D, Haug M, Dickinson SC et al Precultivation of engineered human nasal cartilage enhances the mechanical properties relevant for use in facial reconstructive surgery Ann Surg. 2006;244(6):978–85; discussion 985. doi:10.1097/01sla000024705716710be.

  86. Franke O, Durst K, Maier V, Goken M, Birkholz T, Schneider H, et al. Mechanical properties of hyaline and repair cartilage studied by nanoindentation. Acta Biomater. 2007;3(6):873–81. doi:10.1016/jactbio200704005.

    Article  CAS  PubMed  Google Scholar 

  87. Dai L, He Z, Zhang X, Hu X, Yuan L, Qiang M, et al. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture. Am J Sports Med. 2014;42(3):583–91. doi:10.1177/0363546513518415.

    Article  PubMed  Google Scholar 

  88. Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am. 2009;91(7):1778–90.

    PubMed  Google Scholar 

  89. Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1456–64. doi:10.1007/s00167-010-1042-3.

    Article  CAS  PubMed  Google Scholar 

  90. Gille J, Behrens P, Volpi P, de Girolamo L, Reiss E, Zoch W, et al. Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg. 2013;133(1):87–93. doi:10.1007/s00402-012-1621-5.

    Article  CAS  PubMed  Google Scholar 

  91. Goyal D, Keyhani S, Lee EH, Hui JH. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29(9):1579–88. doi:10.1016/jarthro201305027.

    Article  PubMed  Google Scholar 

  92. Gudas R, Gudaite A, Mickevicius T, Masiulis N, Simonaityte R, Cekanauskas E, et al. Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy. 2013;29(1):89–97. doi:10.1016/jarthro201206009.

    Article  PubMed  Google Scholar 

  93. Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44(11):2846–54. doi:10.1177/0363546516656179.

    Article  PubMed  Google Scholar 

  94. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42(3):648–57. doi:10.1177/0363546513518007.

    Article  PubMed  Google Scholar 

  95. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38(6):1117–24. doi:10.1177/0363546509357915.

    Article  PubMed  Google Scholar 

  96. Minas T, Von Keudell A, Bryant T, Gomoll AH. The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res. 2014;472(1):41–51. doi:10.1007/s11999-013-3146-9.

    Article  PubMed  Google Scholar 

  97. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee. 2006;13(3):203–10. doi:10.1016/jknee200602011.

    Article  CAS  PubMed  Google Scholar 

  98. Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 2008;36(2):235–46. doi:10.1177/-0363546507311095.

  99. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture findings at five years. J Bone Joint Surg Am. 2007;89(10):2105–12. doi:10.2106/jbjsg00003.

    PubMed  Google Scholar 

  100. Gomoll AH, Probst C, Farr J, Cole BJ, Minas T. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am J Sports Med. 2009;37(Suppl 1):20s–3s. doi:10.1177/0363546509348477.

    Article  PubMed  Google Scholar 

  101. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96–105.

    Article  Google Scholar 

  102. Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, et al. Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med. 2011;39(12):2549–57. doi:10.1177/0363546511420688.

    Article  PubMed  Google Scholar 

  103. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6(2):82–97. doi:10.1177/1947603514563597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Whitney GA, Mera H, Weidenbecher M, Awadallah A, Mansour JM, Dennis JE. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. BioResearch Open Access. 2012;1(4):157–65. doi:10.1089/biores20120231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials. 2016;98:1–22. doi:10.1016/jbiomaterials201604018.

    Article  CAS  PubMed  Google Scholar 

  106. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21–34. doi:10.1038/nrrheum2014157.

    Article  CAS  PubMed  Google Scholar 

  107. Tatsumura M, Sakane M, Ochiai N, Mizuno S. Off-loading of cyclic hydrostatic pressure promotes production of extracellular matrix by chondrocytes. Cells Tissues Organs. 2013;198(6):405–13. doi:10.1159/000360156.

    Article  CAS  PubMed  Google Scholar 

  108. Jeon JE, Schrobback K, Hutmacher DW, Klein TJ. Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthr Cartil. 2012;20(8):906–15. doi:10.1016/jjoca201204019.

    Article  CAS  PubMed  Google Scholar 

  109. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376(9739):440–8. doi:10.1016/s0140-6736(10)60668-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Harrington IJ. A bioengineering analysis of force actions at the knee in normal and pathological gait. Biomed Eng. 1976;11(5):167–72.

    CAS  PubMed  Google Scholar 

  111. Crawford DC, Heveran CM, Cannon Jr WD, Foo LF, Potter HG. An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: prospective clinical safety trial at 2 years. Am J Sports Med. 2009;37(7):1334–43. doi:10.1177/0363546509333011.

    Article  PubMed  Google Scholar 

  112. Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res. 2005;8(3):150–61. doi:10.1111/j1601-6343200500335x.

    Article  CAS  PubMed  Google Scholar 

  113. Castagnini F, Pellegrini C, Perazzo L, Vannini F, Buda R. Joint sparing treatments in early ankle osteoarthritis: current procedures and future perspectives. J Exp Orthop. 2016;3(1):3. doi:10.1186/s40634-016-0038-4.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, et al. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng Part A. 2014;20(17–18):2291–304. doi:10.1089/tentea20130414.

    Article  CAS  PubMed  Google Scholar 

  115. Bedouet L, Pascale F, Moine L, Wassef M, Ghegediban SH, Nguyen VN, et al. Intra-articular fate of degradable poly(ethyleneglycol)-hydrogel microspheres as carriers for sustained drug delivery. Int J Pharm. 2013;456(2):536–44. doi:10.1016/jijpharm201308016.

    Article  CAS  PubMed  Google Scholar 

  116. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51. doi:10.1038/nbt2786.

    Article  CAS  PubMed  Google Scholar 

  117. Barber FA, Burns JP, Deutsch A, Labbe MR, Litchfield RB. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8–15. doi:10.1016/jarthro201106038.

    Article  PubMed  Google Scholar 

  118. Moffat KL, Kwei AS, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A. 2009;15(1):115–26. doi:10.1089/tentea20080014.

    Article  CAS  PubMed  Google Scholar 

  119. Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg Am. 2009;91(5):1159–71. doi:10.2106/jbjsh00775.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Silver FH, Freeman JW, DeVore D. Viscoelastic properties of human skin and processed dermis. Skin Res Technol. 2001;7(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  121. Freytes DO, Badylak SF, Webster TJ, Geddes LA, Rundell AE. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials. 2004;25(12):2353–61.

    Article  CAS  PubMed  Google Scholar 

  122. Funakoshi T, Majima T, Iwasaki N, Suenaga N, Sawaguchi N, Shimode K, et al. Application of tissue engineering techniques for rotator cuff regeneration using a chitosan-based hyaluronan hybrid fiber scaffold. Am J Sports Med. 2005;33(8):1193–201. doi:10.1177/0363546504272689.

    Article  PubMed  Google Scholar 

  123. Gloeckner DC, Sacks MS, Billiar KL, Bachrach N. Mechanical evaluation and design of a multilayered collagenous repair biomaterial. J Biomed Mater Res. 2000;52(2):365–73.

    Article  CAS  PubMed  Google Scholar 

  124. Triantafillopoulos IK, Banes AJ, Bowman Jr KF, Maloney M, Garrett Jr WE, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med. 2004;32(4):934–43.

    Article  PubMed  Google Scholar 

  125. Schlegel TF, Hawkins RJ, Lewis CW, Motta T, Turner AS. The effects of augmentation with Swine small intestine submucosa on tendon healing under tension: histologic and mechanical evaluations in sheep. Am J Sports Med. 2006;34(2):275–80. doi:10.1177/0363546505279912.

    Article  PubMed  Google Scholar 

  126. Zalavras CG, Gardocki R, Huang E, Stevanovic M, Hedman T, Tibone J. Reconstruction of large rotator cuff tendon defects with porcine small intestinal submucosa in an animal model. J Shoulder Elbow Surg. 2006;15(2):224–31. doi:10.1016/jjse200506007.

    Article  PubMed  Google Scholar 

  127. Dejardin LM, Arnoczky SP, Ewers BJ, Haut RC, Clarke RB. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa histologic and mechanical evaluation in dogs. Am J Sports Med. 2001;29(2):175–84.

    CAS  PubMed  Google Scholar 

  128. Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg. 2004;13(5):538–41. doi:10.1016/s1058274604001193.

    Article  PubMed  Google Scholar 

  129. Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am. 2007;89(11):2485–97. doi:10.2106/jbjsc01627.

    PubMed  Google Scholar 

  130. Stone KR, Steadman JR, Rodkey WG, Li ST. Regeneration of meniscal cartilage with use of a collagen scaffold Analysis of preliminary data. J Bone Joint Surg Am. 1997;79(12):1770–7.

    Article  CAS  PubMed  Google Scholar 

  131. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, et al. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med. 2011;39(5):977–85. doi:10.1177/0363546510391179.

    Article  PubMed  Google Scholar 

  132. Rodkey WG, DeHaven KE, Montgomery 3rd WH, Baker Jr CL, Beck Jr CL, Hormel SE, et al. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am. 2008;90(7):1413–26. doi:10.2106/jbjsg00656.

    Article  PubMed  Google Scholar 

  133. Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T. Meniscal scaffolds: early experience and review of the literature. Knee. 2012;19(6):760–5. doi:10.1016/jknee201201006.

    Article  CAS  PubMed  Google Scholar 

  134. Genovese E, Angeretti MG, Ronga M, Leonardi A, Novario R, Callegari L, et al. Follow-up of collagen meniscus implants by MRI. Radiol Med. 2007;112(7):1036–48. doi:10.1007/s11547-007-0204-y.

    Article  CAS  PubMed  Google Scholar 

  135. Vrancken AC, Buma P, van Tienen TG. Synthetic meniscus replacement: a review. Int Orthop. 2013;37(2):291–9. doi:10.1007/s00264-012-1682-7.

    Article  PubMed  Google Scholar 

  136. Wada Y, Amiel M, Harwood F, Moriya H, Amiel D. Architectural remodeling in deep frozen meniscal allografts after total meniscectomy. Arthroscopy. 1998;14(3):250–7.

    Article  CAS  PubMed  Google Scholar 

  137. Lee BS, Chung JW, Kim JM, Cho WJ, Kim KA, Bin SI. Morphologic changes in fresh-frozen meniscus allografts over 1 year: a prospective magnetic resonance imaging study on the width and thickness of transplants. Am J Sports Med. 2012;40(6):1384–91. doi:10.1177/0363546512442341.

    Article  PubMed  Google Scholar 

  138. Messner K, Gillquist J. Prosthetic replacement of the rabbit medial meniscus. J Biomed Mater Res. 1993;27(9):1165–73. doi:10.1002/jbm820270907.

    Article  CAS  PubMed  Google Scholar 

  139. Messner K. Meniscal substitution with a Teflon-periosteal composite graft: a rabbit experiment. Biomaterials. 1994;15(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  140. Sommerlath K, Gallino M, Gillquist J. Biomechanical characteristics of different artificial substitutes for rabbit medial meniscus and effect of prosthesis size on knee cartilage. Clin Biomech. 1992;7(2):97–103. doi:10.1016/0268-0033(92)90022-v.

    Article  CAS  Google Scholar 

  141. Klompmaker J, Jansen HW, Veth RP, Nielsen HK, de Groot JH, Pennings AJ. Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clin Mater. 1993;14(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  142. Tienen TG, Heijkants RG, de Groot JH, Schouten AJ, Pennings AJ, Veth RP, et al. Meniscal replacement in dogs tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater. 2006;76(2):389–96. doi:10.1002/jbmb30406.

    Article  CAS  PubMed  Google Scholar 

  143. Welsing RT, van Tienen TG, Ramrattan N, Heijkants R, Schouten AJ, Veth RP, et al. Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am J Sports Med. 2008;36(10):1978–89. doi:10.1177/0363546508319900.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Mandelbaum M.D., D.H.L. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Chahla, J., Cinque, M., LaPrade, R.F., Mandelbaum, B. (2017). Overview of Orthobiology and Biomechanics. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics