Skip to main content

Understanding Scaffolds, Stem Cells, and Growth Factors

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Repairing the biology is fundamental to improve the quality of the damaged tissue, making the recovery period more comfortable and shorter. This is done by biological therapies based on three elements; three-dimensional scaffolds, cells and signalling molecules. The main role of three-dimensional scaffolds is to be the support where de cells adhere, they are also bioactive and interact, attract and stimulate those cells. One of the major focuses in regenerative medicine are cell-therapies, that depending on their collection source they have different characteristics. All the biological events basic for the success when regenerating are controlled by signalling molecules. The biological pathways are immediately activated after a tissue injury, using the Growth Factors we are capable of modulate this response. They are involved in biological functions, such as cellular proliferation, cellular survival, migration and even apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breuls RGM, Jiya TU, Smit TH. Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthop J. 2008;2:103–9. doi:10.2174/1874325000802010103.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95. doi:10.1091/mbc.E02-02-0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28. doi:10.1089/107632701300062859.

    Article  CAS  PubMed  Google Scholar 

  4. Kachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 2011;14:47–59. doi:10.1007/s10456-010-9194-9.

    Article  CAS  PubMed  Google Scholar 

  5. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8. doi:10.1161/01.CIR.0000121425.42966.F1.

    Article  PubMed  Google Scholar 

  6. Hong SJ, Traktuev DO, March KL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010;15:86–91. doi:10.1097/MOT.0b013e328334f074.

    Article  PubMed  Google Scholar 

  7. Wong VW, Levi B, Rajadas J, et al. Stem cell niches for skin regeneration. Int J Biomater. 2012;2012:926059. doi:10.1155/2012/926059.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Koh Y-G, Choi Y-J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19:902–7. doi:10.1016/j.knee.2012.04.001.

    Article  PubMed  Google Scholar 

  9. Liu Y-P, Li S-Z, Yuan F, et al. Infrapatellar fat pad may be with tendon repairing ability and closely related with the developing process of patella Baja. Med Hypotheses. 2011;77:620–3. doi:10.1016/j.mehy.2011.06.048.

    Article  PubMed  Google Scholar 

  10. Gigante A, Cecconi S, Calcagno S, et al. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech. 2012;1:e175–80. doi:10.1016/j.eats.2012.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pascual-Garrido C, Rolón A, Makino A. Treatment of chronic patellar tendinopathy with autologous bone marrow stem cells: a 5-year-followup. Stem Cells Int. 2012;2012:1–5. doi:10.1155/2012/953510.

    Article  Google Scholar 

  12. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42:648–57. doi:10.1177/0363546513518007.

    Article  PubMed  Google Scholar 

  13. Le Nail L-R, Stanovici J, Fournier J, et al. Percutaneous grafting with bone marrow autologous concentrate for open tibia fractures: analysis of forty three cases and literature review. Int Orthop. 2014;38:1845–53. doi:10.1007/s00264-014-2342-x.

    Article  PubMed  Google Scholar 

  14. Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 2015;33:146–56. doi:10.1002/stem.1845.

    Article  CAS  PubMed  Google Scholar 

  15. Pettine K, Suzuki R, Sand T, Murphy M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int Orthop. 2016;40:135–40. doi:10.1007/s00264-015-2886-4.

    Article  PubMed  Google Scholar 

  16. Rodriguez L, Seijas R, Codinach M, Torrents S, Cuscó X, García J, Cugat R. Processing volumes and therapeutic cellular doses of point of care bone marrow concentrates. Int J Orthop. 2016;3:621–6. doi: 10.17554/j.issn.1819-6187.2016.03.169.

  17. Deuel TF, Huang JS, Proffitt RT, et al. Human platelet-derived growth factor. Purification and resolution into two active protein fractions. J Biol Chem. 1981;256:8896–9.

    CAS  PubMed  Google Scholar 

  18. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev. 2003;14(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  19. Reigstad L, Varhaug J, Lillehaug J. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. FEBS J. 2005;272(22):5723–41.

    Article  CAS  PubMed  Google Scholar 

  20. Pierce GF, Mustoe TA, Altrock BW, et al. Therapeutic application of growth factors. J Cell Biochem. 1991;45:319–65. doi:10.1002/jcb.240450403.

    Article  CAS  PubMed  Google Scholar 

  21. Hsu C, Chang J. Clinical implications of growth factors in flexor tendon wound healing. J Hand Surg Am. 2004;29:551–63. doi:10.1016/j.jhsa.2004.04.020.

    Article  PubMed  Google Scholar 

  22. Kiritsy CP, Lynch AB, Lynch SE. Role of growth factors in cutaneous wound healing: a review. Crit Rev Oral Biol Med. 1993;4:729–60.

    Article  CAS  PubMed  Google Scholar 

  23. Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91. doi:10.1146/annurev.biochem.67.1.753.

    Article  PubMed  Google Scholar 

  24. Lind M. Growth factors: possible new clinical tools. A review. Acta Orthop Scand. 1996;67:407–17.

    Article  CAS  PubMed  Google Scholar 

  25. Huang SS, Huang JS. TGF-beta control of cell proliferation. J Cell Biochem. 2005;96:447–62. doi:10.1002/jcb.20558.

    Article  CAS  PubMed  Google Scholar 

  26. Narola J, Pandey SN, Glick A, Chen Y-W. Conditional expression of TGF-β1 in skeletal muscles causes endomysial fibrosis and myofibers atrophy. PLoS One. 2013;8:e79356. doi:10.1371/journal.pone.0079356.

  27. Mohan S, Baylink DJ. Bone growth factors. Clin Orthop Relat Res. 1991;263:30–48.

    Google Scholar 

  28. Canalis E. Clinical review 35: growth factors and their potential clinical value. J Clin Endocrinol Metab. 1992;75:1–4. doi:10.1210/jcem.75.1.1618994.

    CAS  PubMed  Google Scholar 

  29. Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg. 1993;165:728–37.

    Article  CAS  PubMed  Google Scholar 

  30. Tureckova J, Wilson EM, Cappalonga JL, Rotwein P. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J Biol Chem. 2001;276:39264–70. doi:10.1074/jbc.M104991200.

    Article  CAS  PubMed  Google Scholar 

  31. Jansson KS, Costello KE, O’Brien L, et al. A historical perspective of PCL bracing. Knee Surg Sports Traumatol Arthrosc. 2013;21(5):1064–70.

    Article  PubMed  Google Scholar 

  32. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–4. doi:10.1038/362841a0.

  33. Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33:381–94.

    Article  PubMed  Google Scholar 

  34. Arsic N, Zacchigna S, Zentilin L, et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10:844–54. doi:10.1016/j.ymthe.2004.08.007.

  35. Fujio Y, Guo K, Mano T, et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol. 1999;19:5073–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014–9. doi:10.1038/ncb1101-1014.

  37. Nico B, Mangieri D, Benagiano V, et al. Nerve growth factor as an angiogenic factor. Microvasc Res. 2008;75:135–41. doi:10.1016/j.mvr.2007.07.004.

    Article  CAS  PubMed  Google Scholar 

  38. Kawamoto K, Matsuda H. Nerve growth factor and wound healing. Prog Brain Res. 2004;146:369–84. doi:10.1016/S0079-6123(03)46023-8.

    Article  CAS  PubMed  Google Scholar 

  39. Anitua E, Andía I, Sanchez M, et al. Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res. 2005;23:281–6. doi:10.1016/j.orthres.2004.08.015.

    Article  CAS  PubMed  Google Scholar 

  40. Nayeri F, Olsson H, Peterson C, Sundqvist T. Hepatocyte growth factor; expression, concentration and biological activity in chronic leg ulcers. J Dermatol Sci. 2005;37:75–85. doi:10.1016/j.jdermsci.2004.11.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Laura Rivilla for the designing and drawing, Sue-Sonia Tizol for assistance with translation, and all the patients whose images are shown in this chapter. And finally, we would also like to show our gratitude to Professor Doctor Alfonso Blanco for the electron microscopy observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cugat M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Cugat, R. et al. (2017). Understanding Scaffolds, Stem Cells, and Growth Factors. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics