Skip to main content

Selbstorganisation in Netzwerken – von den Neurowissenschaften zur Systembiologie

  • Chapter
  • First Online:
Selbstorganisation – ein Paradigma für die Humanwissenschaften

Zusammenfassung

Die Theorie der Selbstorganisation ist ein theoretisches Konzept, das als Fundament unseres Verständnisses komplexer Systeme dient (Mikhailov und Calenbuhr 2002; Hütt 2006). In seiner allgemeinsten Form kann ein komplexes System als ein System aus vielen interagierenden Elementen verstanden werden, deren individuelle Dynamik nicht linear ist (bei denen also das Eingabe- und das Ausgabesignal nicht in linearer Weise in Verbindung stehen) und das zudem kollektives Verhalten zu zeigen vermag. Oft entsteht dieses kollektive Verhalten in einem komplexen System spontan, es ’emergiert’, wenn ein kritischer Wert eines Kontrollparameters (zum Beispiel der Kopplungsstärke) überschritten wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6), 450-461. https://doi.org/10.1038/nrg2102

  • Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., und Zhou, C. (2008) Synchronization in complex networks. Physics Reports, 469(3), 93–153.

    Google Scholar 

  • Barabási, A. L. (2012), The network takeover. Nature Physics, 8(1), 14-16.

    Google Scholar 

  • Barabási, A. L., Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512.

    Google Scholar 

  • Barabási, A. L., Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-113.

    Google Scholar 

  • Cho, K. H., Wolkenhauer, O. (2003). Analysis and modelling of signal transduction pathways in systems biology. Biochemical Society Transactions, 31, 1503-1509.

    Google Scholar 

  • Davidenko, J. M., Pertsov, A. V., Salomonsz, R., Baxter, W., Jalife, J. (1992). Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature, 355(6358), 349.

    Google Scholar 

  • Drossel, B., Schwabl, F. (1992). Self-organized critical forest-fire model. Physical Review Letters, 69(11), 1629.

    Google Scholar 

  • Erdős, P., und Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1), 17-60.

    Google Scholar 

  • Fretter, C., Müller-Hannemann, M., und Hütt, M. T. (2012). Subgraph fluctuations in random graphs. Physical Review E, 85(5), 056119.

    Google Scholar 

  • Garcia, G. C., Lesne, A., Hütt, M., Hilgetag, C. C. (2012). Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Frontiers in Computational Neuroscience, 6, 50.

    Google Scholar 

  • Geberth, D., Hütt, M. T. (2009). Predicting the distribution of spiral waves from cell properties in a developmental-path model of Dictyostelium pattern formation. PLoS Computational Biology, 5(7), e1000422.

    Google Scholar 

  • Goldbeter, A. (2006). Oscillations and waves of cyclic AMP in Dictyostelium: a prototype for spatio-temporal organization and pulsatile intercellular communication. Bulletin of Mathematical Biology, 68(5), 1095–1109.

    Google Scholar 

  • Grace, M., Hütt, M. T. (2015). Regulation of spatiotemporal patterns by biological variability: general principles and applications to Dictyostelium discoideum. PLoS Computational Biology, 11(11), e1004367.

    Google Scholar 

  • Gray, R. A., Pertsov, A. M., Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75.

    Google Scholar 

  • Guimera, R., Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900.

    Google Scholar 

  • Haken, H. (1977). Synergetics. Physics Bulletin, 28(9), 412.

    Google Scholar 

  • Haken, H. (1980). Synergetics. Naturwissenschaften, 67(3), 121-128.

    Google Scholar 

  • Haken, H. (2013). Synergetics: Introduction and advanced topics. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Hansen, E. C., Battaglia, D., Spiegler, A., Deco, G., Jirsa, V. K. (2015). Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage, 105, 525-535.

    Google Scholar 

  • Helm, K., Viol, K., Weiger, T. M., Tass, P. A., Grefkes, C., Del Monte, D., Schiepek, G. (2018). Neuronal connectivity in major depressive disorder: a systematic review. Neuropsychiatric Disease and Treatment, 14, 2715.

    Google Scholar 

  • Hilgetag, C. C., Hütt, M. T. (2014). Hierarchical modular brain connectivity is a stretch for criticality. Trends in cognitive sciences, 18(3), 114–115.

    Google Scholar 

  • Höller, Y., Trinka, E., Kalss, G., Schiepek, G., Michaelis, R. (2019). Correlation of eeg spectra, connectivity, and information theoretical biomarkers with psychological states in the epilepsy monitoring unit - a pilot study. Epilepsy und Behavior, 99, 106485.

    Google Scholar 

  • Hütt, M. T. (2006). Was ist Selbstorganisation und was nützt sie zum Naturverständnis? In: M. Vec, M. T. Hütt und A. M. Freund (Hrsg.), Selbstorganisation. Köln: Böhlau Verlag.

    Google Scholar 

  • Hütt, M. T. (2014). Understanding genetic variation–the value of systems biology. British journal of clinical pharmacology, 77(4), 597-605.

    Google Scholar 

  • Hütt, M. T. (2019). Modular organization and emergence in systems biology. In L. H. Wegner und U. Lüttge (Hrsg.), Emergence and Modularity in Life Sciences, S. 37-49. Cham: Springer.

    Google Scholar 

  • Hütt, M., und Lesne, A. (2009). Interplay between topology and dynamics in excitation patterns on hierarchical graphs. Frontiers in neuroinformatics, 3, 28.

    Google Scholar 

  • Hütt, M. T., Jain, M., Hilgetag, C. C., Lesne, A. (2012). Stochastic resonance in discrete excitable dynamics on graphs. Chaos, Solitons and Fractals, 45, 611–618.

    Google Scholar 

  • Hütt, M. T., Kaiser, M., und Hilgetag, C. C. (2014). Perspective: network-guided pattern formation of neural dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1653), 20130522.

    Google Scholar 

  • Izhikevich, E. M., Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. PNAS, 105(9), 3593-3598.

    Google Scholar 

  • Klosik, D. F., Grimbs, A., Bornholdt, S., Hütt, M. T. (2017). The interdependent network of gene regulation and metabolism is robust where it needs to be. Nature Communications, 8(1), 534.

    Google Scholar 

  • Marr, C., Geertz, M., Hütt, M. T., und Muskhelishvili, G. (2008). Dissecting the logical types of network control in gene expression profiles. BMC systems biology, 2(1), 18.

    Google Scholar 

  • Messé, A., Hütt, M. T., König, P., und Hilgetag, C. C. (2015). A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks. Scientific reports, 5, 7870.

    Google Scholar 

  • Messé, A., Hütt, M. T., Hilgetag, C. C. (2018). Toward a theory of coactivation patterns in excitable neural networks. PLoS Computational Biology, 14(4), e1006084.

    Google Scholar 

  • Mikhailov, A. S. und Calenbuhr, V. (2002). From cells to societies: models of complex coherent action. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824-827.

    Google Scholar 

  • Moretti, P., Muñoz, M. A. (2013). Griffiths phases and the stretching of criticality in brain networks. Nature Communications, 4, 2521.

    Google Scholar 

  • Müller-Linow, M., Marr, C., Hütt, M. (2006). Topology regulates the distribution pattern of excitations in excitable dynamics on graphs. Physical Review E, 74(1), 1-7.

    Google Scholar 

  • Müller-Linow, M., Hilgetag, C. C., Hütt, M. T. (2008). Organization of excitable dynamics in hierarchical biological networks. PLoS Computational Biology, 4(9), e1000190.

    Google Scholar 

  • Newman, M. E. (2006). Modularity and community structure in networks. PNAS, 103(23), 8577-8582.

    Google Scholar 

  • Pálsson, E., Lee, K. J., Goldstein, R. E., Franke, J., Kessin, R. H., Cox, E. C. (1997). Selection for spiral waves in the social amoebae Dictyostelium. PNAS, 94(25), 13719-13723.

    Google Scholar 

  • Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925.

    Google Scholar 

  • Peluso, P. R., Liebovitch, L. S., Gottman, J. M., Norman, M. D., Su, J. (2012). A mathematical model of psychotherapy: An investigation using dynamic non-linear equations to model the therapeutic relationship. Psychotherapy Research, 22(1), 40–55.

    Google Scholar 

  • Prigogine, I. (1961). Introduction to thermodynamics of irreversible processes, vol 7. New York: Interscience Publishers.

    Google Scholar 

  • Proix, T., Jirsa, V. K., Bartolomei, F., Guye, M., Truccolo, W. (2018). Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nature Communications, 9(1), 1088.

    Google Scholar 

  • Radde, N. E., Hütt, M. T. (2016). The physics behind systems biology. EPJ Nonlinear Biomedical Physics, 4(1), 7.

    Google Scholar 

  • Ravasz, E., Barabási, A. L. (2003). Hierarchical organization in complex networks. Physical Review E, 67(2), 026112.

    Google Scholar 

  • Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabasi, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586), 1551-1555.

    Google Scholar 

  • Rodrigues, F. A., Peron, T. K. D., Ji, P., Kurths, J. (2016). The Kuramoto model in complex networks. Physics Reports, 610, 1-98.

    Google Scholar 

  • Schiepek, G. (2003). Neurobiologie der Psychotherapie. Stuttgart: Schattauer.

    Google Scholar 

  • Schiepek, G. (2017). Komplexität, Berechenbarkeit und Big Data in der Psychologie. In W. Pietsch, J. Wernecke, M. Ott, Berechenbarkeit der Welt?, S. 311-331. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Schiepek, G. und Tschacher, W. (Hrsg.) (1997). Selbstorganisation in Psychologie und Psychiatrie. Braunschweig/Wiesbaden: Vieweg.

    Google Scholar 

  • Schiepek, G., Viol, K., Aichhorn, W., Hütt, M. T., Sungler, K., Pincus, D., Schöller, H. J. (2017). Psychotherapy is chaotic – (Not only) in a computational world. Frontiers in Psychology, 8, 379.

    Google Scholar 

  • Schöller, H., Viol, K., Aichhorn, W., Hütt, M. T., Schiepek, G. (2018). Personality development in psychotherapy: a synergetic model of state-trait dynamics. Cognitive Neurodynamics, 12(5), 441-459.

    Google Scholar 

  • Schröter, M. S., Spoormaker, V. I., Schorer, A., Wohlschläger, A., Czisch, M., Kochs, E. F., Zimmer, C., Hemmer, B., Schneider, G., Jordan, D., und Ilg, R. (2012). Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness. Journal of Neuroscience, 32(37), 12832-12840.

    Google Scholar 

  • Shen-Orr, S. S., Milo, R., Mangan, S., Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31(1), 64.

    Google Scholar 

  • Silverman, E. K., Loscalzo, J. (2013). Developing new drug treatments in the era of network medicine. Clinical Pharmacology und Therapeutics, 93(1), 26-28.

    Google Scholar 

  • Sonnenschein, N., Hütt, M. T., Stoyan, H., Stoyan, D. (2009). Ranges of control in the transcriptional regulation of Escherichia coli. BMC Systems Biology, 3(1), 119.

    Google Scholar 

  • Sonnenschein, N., Geertz, M., Muskhelishvili, G., Hütt, M. T. (2011). Analog regulation of metabolic demand. BMC Systems Biology, 5(1), 40.

    Google Scholar 

  • Sonnenschein, N., Dzib, J. F. G., Lesne, A., Eilebrecht, S., Boulkroun, S., Zennaro, M. C., Benecke, A., Hütt, M. T. (2012). A network perspective on metabolic inconsistency. BMC Systems Biology, 6(1), 41.

    Google Scholar 

  • Strawinska-Zanko, U., Liebovitch, L. S., Peluso, P. R. (2018). Modeling psychotherapy encounters: Rupture and repair. In U. Strawinska-Zanko und L. S. Liebovitch, Mathematical Modeling of Social Relationships, S. 69-88. Cham: Springer.

    Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237(641), 37-72.

    Google Scholar 

  • Varner, J. und Ramkrishna, D. (1999). Mathematical models of metabolic pathways. Current opinion in Biotechnology, 10(2), 146-150.

    Google Scholar 

  • Viol, K., Schiepek, G., Kronbichler, M., Aas, B., Hartl, A., Grafetstätter, C., Kastinger, A., Schöller, H., Reiter, E. M., Said-Yürekli, S., Kronbichler, L., Kravanja-Spannberger, B., Stöger-Schmiedinger, B., Hütt, M. T., Aichhorn, W. (2019). Multi-level assessment of psychotherapy effects in obsessive-compulsive disorder (OCD) reveals relations between neural and neurochemical levels. Psychological Medicine (under review).

    Google Scholar 

  • von Bertalanffy, L. (1968). General system theory. New York: George Braziller.

    Google Scholar 

  • Watts, D. J., Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440.

    Google Scholar 

  • Westerhoff, H. V., Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22(10), 1249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Thorsten Hütt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hütt, MT. (2020). Selbstorganisation in Netzwerken – von den Neurowissenschaften zur Systembiologie. In: Viol, K., Schöller, H., Aichhorn, W. (eds) Selbstorganisation – ein Paradigma für die Humanwissenschaften. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-29906-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-29906-4_12

  • Published:

  • Publisher Name: Springer, Wiesbaden

  • Print ISBN: 978-3-658-29905-7

  • Online ISBN: 978-3-658-29906-4

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics