Skip to main content

Chance and Necessity

Reality Needs Both

  • Chapter
Synergetics

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 1))

  • 678 Accesses

Abstract

Consider a football dribbled ahead over the grass by a football (soccer) player. Its velocity v changes due to two causes. The grass continuously slows the ball down by a friction force whereas the football player randomly increases the velocity of the ball by his kicks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Langevin Equations: An Example

Reservoirs and Random Forces

The Fokker-Planck Equation

Some Properties and Stationary Solution of the Fokker-Planck Equation

Time-Dependent Solutions of the Fokker-Planck Equation

  • The solution of the n-dimensional Fokker-Planck equation with linear drift and constant diffusion coefficients was given by M. C. Wang, G. E. Uhlenbeck: Rev. Mod. Phys. 17, 2 and 3 (1945)

    Article  MathSciNet  Google Scholar 

  • For a short representation of the results see H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

Solution of the Fokker-Planck Equation by Path Integrals

  • L. Onsager, S. Machlup: Phys. Rev. 91, 1505, 1512 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • I. M. Gelfand, A. M. Yaglome: J. Math. Phys. I, 48 (1960)

    Article  ADS  Google Scholar 

  • R. P. Feynman, A. R. Hibbs: Quantum Mechanics and Path Integrals (McGraw-Hill, New York 1965)

    MATH  Google Scholar 

  • F. W. Wiegel: Path Integral Methods in Statistical Mechanics, Physics Reports 16C, No. 2 (North Holland, Amsterdam 1975)

    Google Scholar 

  • R. Graham: In Springer Tracts in Modern Physics, Vol. 66 (Springer, Berlin-Heidelberg-New York 1973) p. 1

    Google Scholar 

  • A critical discussion of that paper gives W. Horsthemke, A. Bach: Z. Phys. B22, 189 (1975)

    ADS  Google Scholar 

  • We follow essentially H. Haken: Z. Phys. B24, 321 (1976) where also classes of solutions of Fokker-Planck equations are discussed.

    MathSciNet  ADS  Google Scholar 

Phase Transition Analogy

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles L. D. Landau, I. M. Lifshitz: In Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon Press, London-Paris 1959)

    Google Scholar 

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles R. Brout: Phase Transitions (Benjamin, New York 1965)

    Google Scholar 

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles L. P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palcanskas, M. Rayl, J. Swift, D. Aspnes, J. Kane: Rev. Mod. Phys. 39, 395 (1967)

    Article  ADS  Google Scholar 

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles M. E. Fischer: Repts. Progr. Phys. 30, 731 (1967)

    Article  Google Scholar 

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles H. E. Stanley: Introduction to Phase Transitions and Critical Phenomena. Internat. Series of Monographs in Physics (Oxford University, New York 1971)

    Google Scholar 

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles A. Münster: Statistical Thermodynamics, Vol. 2 (Springer, Berlin-Heidelberg-New York and Academic Press, New York-London 1974)

    Google Scholar 

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles C. Domb, M. S. Green, eds.: Phase Transitions and Critical Phenomena, Vols. 1–5 (Academic Press, London 1972–76)

    Google Scholar 

  • The modern and powerful renormalization group technique of Wilson is reviewed by K. G. Wilson, J. Kogut: Phys. Rep. 12C, 75 (1974)

    Article  ADS  Google Scholar 

  • The modern and powerful renormalization group technique of Wilson is reviewed by S.-K. Ma: Modern Theory of Critical Phenomena (Benjamin, London 1976)

    Google Scholar 

  • The profound and detailed analogies between a second order phase transition of a system in thermal equilibrium (for instance a superconductor) and transitions of a non-equilibrium system were first derived in the laser-case in independent papers by R. Graham, H. Haken: Z. Phys. 213, 420 (1968) and in particular Z. Phys. 237, 31 (1970),

    Article  ADS  Google Scholar 

  • who treated the continuum mode laser, and by V. DeGiorgio, M. O. Scully: Phys. Rev. A2, 1170 (1970),

    ADS  Google Scholar 

Phase Transition Analogy in Continuous Media: Space Dependent Order Parameter

  • a) References to Systems in Thermal Equilibrium

    Google Scholar 

  • The Ginzburg-Landau theory is presented, for instance, by N. R. Werthamer: In Superconductivity, Vol. 1, ed. by R. D. Parks (Marcel Dekker Inc., New York 1969) p. 321

    Google Scholar 

  • The exact evaluation of correlation functions is due to D. J. Scalapino, M. Sears, R. A. Ferrell: Phys. Rev. B6, 3409 (1972)

    ADS  Google Scholar 

  • Further papers on this evaluation are: L. W. Gruenberg, L. Gunther: Phys. Lett. 38A, 463 (1972)

    ADS  Google Scholar 

  • Further papers on this evaluation are: M. Nauenberg, F. Kuttner, M. Fusman: Phys. Rev. A13, 1185 (1976)

    ADS  Google Scholar 

  • b) References to Systems Far from Thermal Equilibrium (and Nonphysical Systems)

    Google Scholar 

  • R. Graham, H. Haken: Z. Phys. 237, 31 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  • For related topics see H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • and the articles by various authors in H. Haken, ed.: Synergetics (Teubner, Stuttgart 1973)

    MATH  Google Scholar 

  • and the articles by various authors in H. Haken, M. Wagner, eds.: Cooperative Phenomena (Springer, Berlin-Heidelberg-New York 1973)

    MATH  Google Scholar 

  • and the articles by various authors in H. Haken, ed.: Cooperative Effects (North Holland, Amsterdam 1974)

    Google Scholar 

  • and the articles by various authors in H. Haken (ed.): Springer Series in Synergetics Vols. 2–20 (Springer, Berlin-Heidelberg-New York)

    Google Scholar 

Cooperative Effects in the Laser. Self-Organization and Phase Transition

  • The dramatic change of the statistical properties of laser light at laser threshold was first derived and predicted by H. Haken: Z. Phys. 181, 96 (1964)

    Article  ADS  Google Scholar 

The Laser Equations in the Mode Picture

  • For a detailed review on laser theory see H. Haken: In Encyclopedia of Physics, Vol. XXV/c: Laser Theory (Springer, Berlin-Heidelberg-New York 1970)

    Google Scholar 

The Order Parameter Concept

The Single Mode Laser

  • The dramatic change of the statistical properties of laser light at laser threshold was first derived and predicted by H. Haken: Z. Phys. 181, 96 (1964)

    Article  ADS  Google Scholar 

  • For a detailed review on laser theory see H. Haken: In Encyclopedia of Physics, Vol. XXV/c: Laser Theory (Springer, Berlin-Heidelberg-New York 1970)

    Google Scholar 

  • Compare especially H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • The laser distribution function was derived by H. Risken: Z. Phys. 186, 85 (1965)

    Article  ADS  Google Scholar 

  • The laser distribution function was derived by R. D. Hempstead, M. Lax: J. Phys. Rev. 161, 350 (1967)

    Article  ADS  Google Scholar 

  • For a fully quantum mechanical distribution function cf. W. Weidlich, H. Risken, H. Haken: Z. Phys. 201, 396 (1967)

    Article  ADS  Google Scholar 

  • For a fully quantum mechanical distribution function cf. M. Scully, W. E. Lamb: Phys. Rev. 159, 208 (1967):

    Article  ADS  Google Scholar 

  • For a fully quantum mechanical distribution function cf. M. Scully, W. E. Lamb: Phys. Rev. 166, 246 (1968)

    Article  ADS  Google Scholar 

The Multimode Laser

Laser with Continuously Many Modes. Analogy with Superconductivity

First-Order Phase Transitions of the Single Mode Laser

Hierarchy of Laser Instabilities and Ultrashort Laser Pulses

  • We follow essentially H. Haken, H. Ohno: Opt. Commun. 16, 205 (1976)

    Article  ADS  Google Scholar 

  • We follow essentially H. Ohno, H. Haken: Phys. Lett. 59A, 261 (1976), and unpublished work

    ADS  Google Scholar 

  • For a machine calculation see H. Risken, K. Nummedal: Phys. Lett. 26A, 275 (1968);

    ADS  Google Scholar 

  • For a machine calculation see H. Risken, K. Nummedal: J. appl. Phys. 39, 4662 (1968)

    Article  ADS  Google Scholar 

  • For a discussion of that instability see also R. Graham, H. Haken: Z. Phys. 213, 420 (1968)

    Article  ADS  Google Scholar 

  • For temporal oscillations of a single mode laser cf. K. Tomita, T. Todani, H. Kidachi: Phys. Lett. 51A, 483 (1975)

    ADS  Google Scholar 

  • For further synergetic effects see R. Bonifacio (ed.): Dissipative Systems in Quantum Optics, Topics Current Phys., Vol. 27 (Springer, Berlin-Heidelberg-New York 1982)

    Google Scholar 

Instabilities in Fluid Dynamics: The Bénard and Taylor Problems. 8.10 The Basic Equations. 8.11 Introduction of new variables 8.12 Damped and Neutral Solutions (R ≤ Rc)

  • Some monographs in hydrodynamics: L. D. Landau, E. M. Lifshitz: In Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, London-New York-Paris-Los Angeles 1959)

    Google Scholar 

  • Some monographs in hydrodynamics: Chia-Shun-Yih: Fluid Mechanics (McGraw Hill, New York 1969)

    Google Scholar 

  • Some monographs in hydrodynamics: G. K. Batchelor: An Introduction to Fluid Dynamics (University Press, Cambridge 1970)

    Google Scholar 

  • Some monographs in hydrodynamics: S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford 1961)

    MATH  Google Scholar 

  • Stability problems are treated particularly by Chandrasekhar l.c. and by C. C. Lin: Hydrodynamic Stability (University Press, Cambridge 1967)

    Google Scholar 

Solution Near R = Rc (Nonlinear Domain). Effective Langevin Equations. 8.14 The Fokker-Planck Equation and Its Stationary Solution

  • We follow essentially H. Haken: Phys. Lett. 46A, 193 (1973)

    ADS  Google Scholar 

  • and in particular Rev. Mod. Phys. 47, 67 (1976)

    Google Scholar 

  • For related work see R. Graham: Phys. Rev. Lett. 31, 1479 (1973):

    Article  ADS  Google Scholar 

  • For related work see R. Graham: Phys. Rev. 10, 1762 (1974)

    ADS  Google Scholar 

  • A. Wunderlin: Thesis, Stuttgart University (1975)

    Google Scholar 

  • J. Swift, P. C. Hohenberg: Phys. Rev. A15, 319 (1977)

    ADS  Google Scholar 

  • For the analysis of mode-configurations, but without fluctuations, cf. A. Schlüter, D. Lortz, F. Busse: J. Fluid Mech. 23, 129 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • F. H. Busse: J. Fluid Mech. 30, 625 (1967)

    Article  ADS  MATH  Google Scholar 

  • A. C. Newell, J. A. Whitehead: J. Fluid Mech. 38, 279 (1969)

    Article  ADS  MATH  Google Scholar 

  • R. C. Diprima, H. Eckhaus, L. A. Segel: J. Fluid Mech. 49, 705 (1971)

    Article  ADS  MATH  Google Scholar 

  • Higher instabilities are discussed by F. H. Busse: J. Fluid Mech. 52, 1, 97 (1972)

    Article  ADS  MATH  Google Scholar 

  • Higher instabilities are discussed by D. Ruelle, F. Takens: Comm. Math. Phys. 20, 167 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Higher instabilities are discussed by J. B. McLaughlin, P. C. Martin: Phys. Rev. A12, 186 (1975)

    ADS  Google Scholar 

  • Higher instabilities are discussed by J. Gollup, S. V. Benson: In Pattern Formation by Dynamic Systems and Pattern Recognition, (ed. by H. Haken), Springer Series in Synergetic Vol. 5 (Springer, Berlin-Heidelberg-New York 1979)

    Google Scholar 

  • where further references may be found. A review on the present status of experiments and theory give the books Fluctuations, Instabilities and Phase Transitions, ed. by T. Riste (Plenum Press, New York 1975)

    Google Scholar 

  • H. L. Swinney, J. P. Gollub (eds.): Hydrodynamic Instabilities and the Transitions to Turbulence, Topics Appl. Phys., Vol. 45 (Springer, Berlin-Heidelberg-New York 1981)

    Google Scholar 

  • For a detailed treatment of analogies between fluid and laser instabilities c.f. M. G. Velarde: In Evolution of Order and Chaos, ed. by H. Haken, Springer Series in Synergetics, Vol.17 (Springer, Berlin-Heidelberg-New York 1982) where further references may be found.

    Google Scholar 

A Model for the Statistical Dynamics of the Gunn Instability Near Threshold

  • J. B. Gunn: Solid State Commun. 1, 88 (1963)

    Article  ADS  Google Scholar 

  • J. B. Gunn: IBM J. Res. Develop. 8, (1964)

    Google Scholar 

  • For a theoretical discussion of this and related effects see for instance H. Thomas: In Synergetics, ed. by H. Haken (Teubner, Stuttgart 1973)

    Google Scholar 

  • Here, we follow essentially K. Nakamura: J. Phys. Soc. Jap. 38, 46 (1975)

    Article  ADS  Google Scholar 

Elastic Stability: Outline of Some Basic Ideas

  • Introductions to this field give J. M. T. Thompson, G. W. Hunt: A General Theory of Elastic Stability (Wiley, London 1973)

    MATH  Google Scholar 

  • K. Huseyin: Nonlinear Theory of Elastic Stability (Nordhoff, Leyden 1975)

    MATH  Google Scholar 

  • Concentration oscillations were reported as early as 1921 by C. H. Bray: J. Am. Chem. Soc. 43, 1262 (1921)

    Article  Google Scholar 

  • A different reaction showing oscillations was studied by B. P. Belousov: Sb. ref. radats. med. Moscow (1959)

    Google Scholar 

  • This work was extended by Zhabotinsky and his coworkers in a series of papers V. A. Vavilin, A. M. Zhabotinsky, L. S. Yaguzhinsky: Oscillatory Processes in Biological and Chemical Systems (Moscow Science Publ. 1967) p. 181

    Google Scholar 

  • This work was extended by Zhabotinsky and his coworkers in a series of papers A. N. Zaikin, A. M. Zhabotinsky: Nature 225, 535 (1970)

    Article  ADS  Google Scholar 

  • This work was extended by Zhabotinsky and his coworkers in a series of papers A. M. Zhabotinsky, A. N. Zaikin: J. Theor. Biol. 40, 45 (1973)

    Article  Google Scholar 

  • A theoretical model accounting for the occurrence of spatial structures was first given by A. M. Turing: Phil. Trans. Roy. Soc. B 237, 37 (1952)

    Article  ADS  Google Scholar 

  • Models of chemical reactions showing spatial and temporal structures were treated in numerous publications by Prigogine and his coworkers. P. Glansdorff, I. Prigogine: Thermodynamik Theory of Structures, Stability and Fluctuations (Wiley, New York 1971)

    Google Scholar 

  • with many references, and G. Nicolis, I. Prigogine: Self-organization in Non-equilibrium Systems (Wiley, New York 1977)

    Google Scholar 

  • Prigogine has coined the word “dissipative structures”. Glansdorff and Prigogine base their work on entropy production principles and use the excess entropy production as means to search for the onset of an instability. The validity of such criteria has been critically investigated by R. Landauer: Phys. Rev. A12, 636 (1975). The Glansdorff-Prigogine approach does not give an answer to what happens at the instability point and how to determine or classify the new evolving structures. An important line of research by the Brussels school, namely chemical reaction models, comes closer to the spirit of Synergetics.

    ADS  Google Scholar 

  • A review of the statistical aspects of chemical reactions can be found in D. McQuarry: Supplementary Review Series in Appl. Probability (Methuen, London 1967)

    Google Scholar 

  • A detailed review over the whole field gives the Faraday Symposium 9: Phys. Chemistry of Oscillatory Phenomena, London (1974)

    Google Scholar 

  • A detailed review over the whole field gives the Y. Schiffmann: Phys. Rep. 64, 88 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  • For chemical oscillations see especially G. Nicolis, J. Portnow: Chem. Rev. 73, 365 (1973)

    Article  Google Scholar 

Deterministic Processes, Without Diffusion, One Variable. 9.3 Reaction and Diffusion Equations

  • We essentially follow F. Schlögl: Z. Phys. 253, 147 (1972),

    Article  ADS  Google Scholar 

  • who gave the steady state solution. The transient solution was determined by H. Ohno: Stuttgart (unpublished)

    Google Scholar 

React ion-Diffusion Model with Two or Three Variables; the Brusselator and the Oregonator

  • We give here our own nonlinear treatment (A. Wunderlin, H. Haken, unpublished) of the reaction-diffusion equations of the “Brusselator” reaction, originally introduced by Prigogine and coworkers, l.c. For related treatments see J. F. G. Auchmuchty, G. Nicolis: Bull. Math. Biol. 37, 1 (1974)

    Google Scholar 

  • We give here our own nonlinear treatment (A. Wunderlin, H. Haken, unpublished) of the reaction-diffusion equations of the “Brusselator” reaction, originally introduced by Prigogine and coworkers, l.c. For related treatments see Y. Kuramoto, T. Tsusuki: Progr. Theor. Phys. 52, 1399 (1974)

    Article  ADS  Google Scholar 

  • We give here our own nonlinear treatment (A. Wunderlin, H. Haken, unpublished) of the reaction-diffusion equations of the “Brusselator” reaction, originally introduced by Prigogine and coworkers, l.c. For related treatments see M. Herschkowitz-Kaufmann: Bull. Math. Biol. 37, 589 (1975)

    Article  Google Scholar 

  • The “Oregonator” model reaction was formulated and treated by R. J. Field, E. Korös, R. M. Noyes: J. Am. Chem. Soc. 49, 8649 (1972)

    Article  Google Scholar 

  • The “Oregonator” model reaction was formulated and treated by R. J. Field, R. M. Noyes: Nature 237, 390 (1972)

    Article  ADS  Google Scholar 

  • The “Oregonator” model reaction was formulated and treated by R. J. Field, R. M. Noyes: J. Chem Phys. 60, 1877 (1974)

    Article  ADS  Google Scholar 

  • The “Oregonator” model reaction was formulated and treated by R. J. Field, R. M. Noyes: J. Am. Chem. Soc. 96, 2001 (1974)

    Article  Google Scholar 

Stochastic Model for a Chemical Reaction Without Diffusion. Birth and Death Processes. One Variable

  • A first treatment of this model is due to V. J. McNeil, D. F. Walls: J. Stat. Phys. 10, 439 (1974)

    Article  ADS  Google Scholar 

Stochastic Model for a Chemical Reaction with Diffusion. One Variable

  • The master equation with diffusion is derived by H. Haken: Z. Phys. B20, 413 (1975)

    ADS  Google Scholar 

  • We essentially follow C. H. Gardiner, K. J. McNeil, D. F. Walls, I. S. Matheson: J. Stat. Phys. 14, 4, 307 (1976)

    Article  ADS  Google Scholar 

  • Related to this chapter are the papers by G. Nicolis, P. Aden, A. van Nypelseer: Progr. Theor. Phys. 52, 1481 (1974)

    Article  ADS  Google Scholar 

  • Related to this chapter are the papers by M. Malek-Mansour, G. Nicolis: preprint Febr. 1975

    Google Scholar 

Stochastic Treatment of the Brusselator Close to Its Soft Mode Instability

Chemical Networks

  • Related to this chapter are G. F. Oster, A. S. Perelson: Chem. Reaction Dynamics. Arch. Rat. Mech. Anal. 55, 230 (1974)

    Article  MathSciNet  Google Scholar 

  • Related to this chapter are A. S. Perelson, G. F. Oster. Chem. Reaction Dynamics, Part II; Reaction Networks. Arch Rat. Mech. Anal. 57, 31 (1974/75)

    Article  MathSciNet  Google Scholar 

  • with further references. G. F. Oster, A. S. Perelson, A. Katchalsky: Quart. Rev. Biophys. 6, 1 (1973)

    Article  Google Scholar 

  • O. E. Rössler: In Lecture Notes in Biomathematics, Vol. 4 (Springer, Berlin-Heidelberg-New York 1974) p. 419

    Google Scholar 

  • O. E. Rössler: Z. Naturforsch. 31a, 255 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haken, H. (1983). Chance and Necessity. In: Synergetics. Springer Series in Synergetics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88338-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88338-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88340-8

  • Online ISBN: 978-3-642-88338-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics