Skip to main content

Cardiopulmonary System Responses to Muscular Exercise in Man

  • Conference paper
Circulation, Respiration, and Metabolism

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Muscular exercise can only be performed at the expense of energy stores which are readily accessible to the contractile mechanisms of skeletal muscle; specifically, through the utilization of the free energy of hydrolysis of ATP. Intramuscular ATP concentrations are themselves maintained at the expense of creatine phosphate breakdown and through increased rates of ATP production resulting from aerobic or anaerobic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bakker HK, Struikenkamp RS, De Vries GA (1980) Dynamics of ventilation, heart rate, and gas exchange: sinusoidal and impulse work loads in man. J Appl Physiol 48: 289–301

    PubMed  CAS  Google Scholar 

  • Bennett FM, Tallman RD, Grodins FS (1984) Role of VC02 in eontrol of breathing of awake dogs. J Appl Physiol 56: 1335–1337

    PubMed  CAS  Google Scholar 

  • Biscoe TJ (1977) The carotid body. What next? Am Rev Respir Dis 115: 189–191

    PubMed  CAS  Google Scholar 

  • Black AMS, McCloskey DI, Torrance RW (1971) The response of carotid chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir Physiol 13: 36–49

    Article  PubMed  CAS  Google Scholar 

  • Black AMS, Goodman NW, Nail BS, Rao PS, Torrance RW (1973) The significance of the timing of chemoreceptor impulses for their effect upon respiration. Acta Neurobiol Exp 33: 139–147

    CAS  Google Scholar 

  • Casaburi R, Whipp BJ, Wasserman K, Stremel RW (1978) Ventilatory control characteristics of the exercise hyperpnea as discerned from dynamic forcing techniques. Chest 73S: 280S–283S

    Google Scholar 

  • Cross BA, Davey A, Guz A, Katona PG, Maclean M, Murphy K, Semple SJG, Stidwell R (1982) The pH oscillations in arterial blood during exercise; a potential signal for the ventilatory response in the dog. J Physiol (Lond) 329: 57–73

    CAS  Google Scholar 

  • Cunningham DJC (1974) The control system regulating breathing in man. Q Rev Biophys 6: 433–483

    Article  Google Scholar 

  • Cunningham DJC (1975) A model illustrating the importance of timing in the regulation of breathing. Nature 253: 440–442

    Article  PubMed  CAS  Google Scholar 

  • Davies CTM, Di Prampero PE, Cerretelli P (1972) Kinetics of cardiac output and respiratory gas exchange during exercise and recovery. J Appl Physiol 32: 618–625

    PubMed  CAS  Google Scholar 

  • Dejours P (1964) Control of respiration in muscular exercise. In: Rahn H, Fenn WO (eds) Respiration. Handbook of Physiology, vol I. Am Physiol Soc, Washington DC, pp 631–648

    Google Scholar 

  • Dejours P (1967) Neurogenic factors in the control of ventilation during exercise. Cire Res 10–21 (suppl) 1: I146–I153

    Google Scholar 

  • Dempsey JA, Mitchell GS, Smith CA (1984) Exercise and chemoreception. Am Rev Respir Dis 129 (Suppl): S31–S34

    PubMed  CAS  Google Scholar 

  • Eldridge FL (1972) The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation. J Physiol (Lond) 222: 319–333

    CAS  Google Scholar 

  • Eldridge FL (1977) Maintenance of respiration by central neural feedback mechanisms. Fed Proc 36: 2400–2404

    PubMed  CAS  Google Scholar 

  • Eldridge FL, Gill-Kumar P (1980) Mechanisms of hyperpnea induced by isoproterenol. Respir Physiol 40: 349–363

    Article  PubMed  CAS  Google Scholar 

  • Eldridge FL, Millhorn DE, Waldrop TG (1981) Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211: 844–846

    Article  PubMed  CAS  Google Scholar 

  • Folinsbee LJ, Wallace ES, Bedi JF, Horvath SM (1983) Respiratory pattern in trained athletes. In: Whipp BJ, Wiberg DM (eds) Elseiver, New York, pp 205 –212

    Google Scholar 

  • Fordyce WE, Bennett FM (1984) Some characteristics of a steady state model of exercise hyperpnea. Physiologist 27 (4): 217

    Google Scholar 

  • Green JF, Sheldon MI (1983) Ventilatory changes associated with changes in pulmonary blood flow in dogs. J Appl Physiol 54: 997–1002

    Article  PubMed  CAS  Google Scholar 

  • Griffiths TG, Henson LC, Huntsman D, Wasserman K, Whipp BJ (1980) The influence of inspired 02 partial pressure on ventilatory and gas exchange kinetics during exercise. J Physiol (Lond) 306: 34 P

    Google Scholar 

  • Guyton AC, Jones CE, Coleman TG (1973) Circulatory physiology: Cardiac output and its regulation. Saunders, Philadelphia, chapt 25

    Google Scholar 

  • Hagberg JM, Coyle EF, Carroll JE, Miller JM, Martin WH, Brooke MH (1982) Exercise hyperventilation in patients with McArdle’s disease. J Appl Physiol 52: 991–994

    PubMed  CAS  Google Scholar 

  • Herxheimer H, Kost R (1932) Das Verhältnis von Sauerstoffaufnahme und Kohlensäureausscheidung zur Ventilation bei harter Muskelarbeit, Z Klin Med 108: 240–247

    Google Scholar 

  • Huszczuk A, Jones PW, Wasserman K (1981) Pressure information from the right ventricle as a reflex coupler of ventilation and cardiac output. Fed Proc 40: 568

    Google Scholar 

  • Huszczuk A, Jones PW, Oren A, Shors EC, Nery LE, Whipp BJ, Wasserman K (1983) Venous return and ventilatory control. In: Whipp BJ, Wiberg DM (eds) Modelling and control of breathing. Elsevier, New York, pp 78–85

    Google Scholar 

  • Jensen JI (1972) Neural ventilatory drive during arm and leg exercise. Scand J Clin Lab Invest 29: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Jones NL (1975) Exercise testing in pulmonary evaluation: rationale, methods, and the normal respiratory response to exercise. N Engl J Med 293: 541–544

    Article  PubMed  CAS  Google Scholar 

  • Jones PW, Huszczuk A, Wasserman K (1982) Cardiac output as a controller of ventilation through changes in right ventricular load. J Appl Physiol 53: 218–244

    Article  PubMed  CAS  Google Scholar 

  • Juratsch CE, Huszczuk A, Gianotta S, Whipp BJ (1981) Evidence for a ‘cardiodynamic’ component of the isoproterenol induced hyperpnea in the dog. Fed Proc 40: 567

    Google Scholar 

  • Kan WO, Ledsome JR, Boiter CP (1979) Pulmonary arterial distension and activity in phrenic nerve of anesthetized dogs. J Appl Physiol 46: 625–631

    PubMed  CAS  Google Scholar 

  • Kao FF (1963) An experimental study of the pathways involved in exercise hyperpnea employing cross-circulation techniques. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 461–502

    Google Scholar 

  • Karlsson H, Lindborg B, Linnarsson D (1975) Time courses of pulmonary gas exchange and heart rate changes in supine exercise. Acta Physiol Scand 95: 329–340

    Article  PubMed  CAS  Google Scholar 

  • Kostreva DR, Hopp FA, Zuperku EJ, Kampine JP (1979) Apnea, tachycardia and hypertension elicited by cardiac vagal afferents. J Appl Physiol 47: 312–318

    PubMed  CAS  Google Scholar 

  • Krogh A, Lindhard J (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol (Lond) 47: 112–136

    CAS  Google Scholar 

  • Lewis SM (1975) Awake baboon’s ventilatory response to venous and inhaled CO2 loading. J Appl Physiol 39: 417–422

    PubMed  CAS  Google Scholar 

  • Linnarsson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand (Suppl) 415: 1–68

    CAS  Google Scholar 

  • Lloyd TC Jr (1984) Effect on breathing of acute pressure rise in pulmonary artery and right ventricle. J Appl Physiol 57: 110–116

    PubMed  Google Scholar 

  • McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond) 224: 173–186

    CAS  Google Scholar 

  • Miyamoto Y, Nakazono Y, Hiura T, Abe Y (1983) Cardiorespiratory dynamics during sinusoidal and impulse exercise in man. Jpn J Physiol 33: 971–986

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Whipp BJ, Wasserman K (1982) Effect of acid-base status on the kinetics of the ventilatorY response to moderate exercise. J Appl Physiol 52: 1013–1017

    PubMed  CAS  Google Scholar 

  • Phillipson EA, Bowes G, Townsend ER, Duffin J, Cooper JD (1981) Role of metabolic CO2 production in ventilatory response to steady-state exercise. J Clin Invest 68: 768–774

    Article  PubMed  CAS  Google Scholar 

  • Saunders KB (1980) Oscillations of arterial CO2 tension in a respiratory model: some implications for the control of breathing in exercise. J Theor Biol 84: 163–181

    Article  PubMed  CAS  Google Scholar 

  • Shors EC, Huszczuk A, Wasserman K, Whipp BJ (1983) Effects of spinal-cord section and altered lung CO2 flow on the exercise hyperpnea in the dog. In: Whipp BJ, Wiberg DM (eds) Modelling and control of breathing. Elsevier, New York, pp 274–281

    Google Scholar 

  • Stockley RA (1978) The contribution of the reflex hypoxic drive to the hyperpnea of exercise.Respir Physiol 35: 79–87

    CAS  Google Scholar 

  • Stremel RW, Huntsman DJ, Casaburi R, Whipp BJ, Wasserman K (1978) Control of ventilation during intraveous CO2 loading in the awake dog. J Appl Physiol 44: 311–316

    PubMed  CAS  Google Scholar 

  • Stremel RW, Whipp BJ, Casaburi R, Huntsman DJ, Wasserman K (1979) Hypopnea consequent to diminished blood flow in the dog. J Appl Physiol 46: 1171–1177

    PubMed  CAS  Google Scholar 

  • Tibes U (1977) Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles. Cire Res 41: 332–341

    CAS  Google Scholar 

  • Torrance RW (1974) Arterial chemoreceptors. In: Widdicombe JG (ed) Respiration, MTP Int Rev Sci, Ser one, Physiol vol 2. Butterworths, London, pp 247–271

    Google Scholar 

  • Waldrop TG, Rybicki KJ, Kaufman MP (1984) Chemical activation of group I and group II muscle afferents has no cardiorespiratory effects. J Appl Physiol 56: 1223–1228

    PubMed  CAS  Google Scholar 

  • Wasserman DH, Whipp BJ (1983) Coupling of ventilation to pulmonary gas exchange during non-steady-state work in men. J Appl Physiol 54: 587–593

    PubMed  CAS  Google Scholar 

  • Wasserman K, Whipp BJ (1976) The carotid bodies and respiratory control in man. In: Paintal AS (ed) Morphology and mechanisms of chemoreceptors. Navchetan, Delhi, pp 156–174

    Google Scholar 

  • Wasserman K, Van Kessel AL, Burton GG (1967) Interaction of physiological mechanisms during exercise. J Appl Physiol 22: 71–85

    PubMed  CAS  Google Scholar 

  • Wasserman K, Whipp BJ, Koyal SN, Clearly MG (1975) Effect of carotid body resection on ventilatory and acid-base control during exercise. J Appl Physiol 39: 354–358

    PubMed  CAS  Google Scholar 

  • Wasserman K, Whipp BJ, Casaburi R, Beaver WL, Brown HV (1977) CO2 flow to the lungs and ventilatory control. In: Dempsey JA, Reed CE (eds) Muscular exercise and the lung. University of Wisconsin Press, Madison, pp 105–135

    Google Scholar 

  • Weiler-Ravell D, Cooper DM, Whipp BJ, Wasserman K (1982) Effect of posture on the ventilator response at the start of exercise. Fed Proc 41: 1102

    Google Scholar 

  • Whipp BJ (1981) The control of the exercise hyperpnea. In: Hornbein T (ed) The regulation of breathing. Dekker, New York, pp 1069–1139

    Google Scholar 

  • Whipp BJ, Davis JA (1979) Peripheral chemoreceptors and exercise hyperpnea. Med Sci Sports 11: 204–212

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Ward SA (1982) Cardiopulmonary coupling during exercise. J Exp Biol 100: 175–193

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Wasserman K, Davis JA, Lamarra N, Ward SA (1980) Determinants of O2 and CO2 kinetics during exercise in man. In: Ceretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier, Amsterdam, pp 175–185

    Google Scholar 

  • Winn R, Hildebrant JR, Hildebrant J (1979) Cardiorespiratory responses following isoproterenol injection in rabbits. J Appl Physiol 47: 352–359

    PubMed  CAS  Google Scholar 

  • Yamamoto WS (1960) Mathematical analysis of the time course of alveolar CO2. J Appl Physiol 15: 215–219

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Whipp, B.J., Ward, S.A. (1985). Cardiopulmonary System Responses to Muscular Exercise in Man. In: Gilles, R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70610-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70610-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70612-7

  • Online ISBN: 978-3-642-70610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics