Skip to main content

Attachment of Bacteria: Advantage or Disadvantage for Survival in the Aquatic Environment

  • Conference paper
Microbial Adhesion and Aggregation

Part of the book series: Life Sciences Research Reports ((DAHLEM LIFE,volume 31))

Abstract

This review is based on the evaluation of observations of attached bacterial numbers and activities from the aquatic biosphere. The term “activity” is discussed with respect to these bacteria, and it is suggested that measurements of extracellular activities should be applied as a most relevant means to determine the ecological role of attached bacteria. The portion of attached bacteria can vary from a few % to 94% of total bacteria abundance in different aquatic regions depending on particle abundance, particle composition, and nutrient conditions in the water phase. Characteristics of uptake and respiration of dissolved organic compounds do not necessarily exhibit an advantage for attached bacteria in comparison to free-living ones. However, preliminary experiments have shown that attached bacteria are provided with special extracellular enzymatic faculties concerning Vmax and Km of selected enzymes. In sediment systems, where mechanical stress can be a dominant factor, attachment to protected areas is a necessity for the survival of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azam, F.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.-A.; and Thingstad, E. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol.-Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  2. Azam, F., and Hodson, R.E. 1977. Size distribution and activity of marine microheterotrophs. Limn. Ocean. 22: 492–501.

    Article  CAS  Google Scholar 

  3. Bell, C.R., and Albright, L.J. 1982. Attached and free-floating bacteria in a diverse selection of water bodies. Appl. Envir. Microbiol. 43: 1227–1237.

    CAS  Google Scholar 

  4. Cammen, L.M., and Walker, J.A. 1982. Distribution and activity of attached and free-living suspended bacteria in the Bay of Fundy. Can. J. Fish. Aquat. Sci. 39: 1655–1663.

    Article  Google Scholar 

  5. Chave, K.E. 1970. Carbonate-organic interaction in sea water. In Organic Matter in Natural Waters, ed. D.W. Hood, pp. 373–386. University of Alaska Press.

    Google Scholar 

  6. Chet, I.; Asketh, P.; and Mitchell, R. 1975. Repulsion of bacteria from marine surfaces. Appl. Microbiol. 30: 1043–1045.

    PubMed  CAS  Google Scholar 

  7. Ducklow, H.W., and Kirchman, D.L. 1983. Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, USA. J. Plankton Res. 5: 333–355.

    Article  Google Scholar 

  8. Fellows, D.A.; Karl, D.M.; and Knauer, G.A. 1981. Large particle fluxes and the vertical transport of living carbon in the upper 1500 m of the northeast Pacific Ocean. Deep-Sea Res. 28A: 921–936.

    Article  Google Scholar 

  9. Gocke, K. 1975. Untersuchungen liber die Aufnahme von gelöster Glukose unter natllrlichen Verhaltnissen durch gröβenfraktioniertes Nano- und Ultrananoplankton. Kiel. Meeresforsch. 31: 87–94.

    CAS  Google Scholar 

  10. Gordon, A.S.; Gerchakov, S.M.; and Millero, F.J. 1983. Effects of inorganic particles on metabolism by a periphytic marine bacterium. Appl. Envir. Microbiol. 45: 411–417.

    CAS  Google Scholar 

  11. Hanson, R.B., and Wiebe, W.J. 1977. Heterotrophic activity associated with particulate size fractions in a Spatina alterniflora salt-marsh estuary, Sapelo Island, Georgia, USA, and the continental shelf waters. Mar. Biol. 42: 321–330.

    Article  Google Scholar 

  12. Hargrave, B.T. 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limn. Ocean. 17: 583–596.

    Article  CAS  Google Scholar 

  13. Hoppe, H.-G. 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography. Mar. Biol. 36: 291–302.

    Article  Google Scholar 

  14. Hoppe, H.-G. 1977. Analysis of actively metabolizing bacterial populations. In Microbial Ecology of a Brackish Water Environment, ed. G. Rheinheimer, pp. 179–197. Berlin: Springer-Verlag.

    Google Scholar 

  15. Hoppe, H.-G. 1981. Blue-green algae agglomeration in surface water: a microbiotope of high bacterial activity. Kiel. Meeresforsch. 5: 291–303.

    Google Scholar 

  16. Hoppe, H.-G. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol.-Prog. Ser. 11: 299–308.

    Article  CAS  Google Scholar 

  17. Hoppe, H.-G.; Gocke, K.; Zamorano, D.; and Zimmermann, R. 1983. Degradation of macromolecular organic compounds in a tropical lagoon (Cíenaga Grande, Columbia) and its ecological significance. Int. Rev. ges. Hydrobiol. 68: 811–824.

    Article  CAS  Google Scholar 

  18. Karl, D.M. 1982. Microbial transformation of organic matter at ocean interfaces: a review and prospectus. EOS 63; 138–140.

    Article  Google Scholar 

  19. Kato, K. 1984. A concept on the structure and function of bacterial community in aquatic ecosystems. Verh. Internat. Verein Limnol. 22, in press.

    Google Scholar 

  20. Khailov, K.M., and Finenko, Z.Z. 1970. Organic macromolecular compounds dissolved in sea-water and their inclusion into food chains. InFood Chains, ed. J.H. Steele, pp. 6–18. Edinburgh: Oliver and Boyd.

    Google Scholar 

  21. King, G.M., and Berman, T. 1984. Potential effects of isotopic dilution on apparent respiration in 14C-heterotrophy experiments. Mar. Ecol.-Prog. Ser., in press.

    Google Scholar 

  22. Kirchman, D., and Mitchell, R. 1982. Contribution of particle- bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. Envir. Microbiol. 43: 200–209.

    CAS  Google Scholar 

  23. Kjelleberg, S.; Humphrey, B.A.; and Marshall, K.C. 1982. Effect of interfaces on small, starved marine bacteria. Appl. Envir. Microbiol. 43: 1166–1172.

    CAS  Google Scholar 

  24. Linley, E.A.S., and Field, J.G. 1982. The nature and ecological significance of bacterial aggregation in a near-shore upwelling ecosystem. Estuarine, Coastal Shelf Sci. 14: 1–11.

    Article  Google Scholar 

  25. Marshall, K.C. 1979. Growth at interfaces. InStrategies of Microbial Life in Extreme Environments, ed. M. Shilo, pp. 281–290. Dahlem Konferenzen. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  26. Meyer-Reil, L.A.; Dawson, R.; Liebezeit, G.; and Tiedge, H. 1978. Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar. Biol. 48: 161–171.

    Article  CAS  Google Scholar 

  27. Morita, R.Y. 1982. Starvation-survival of heterotrophs in the marine environment. InAdvances in Microbial Ecology, ed. K.C. Marshall, vol. 6, pp. 171–198. New York: Plenum Publishing Corporation.

    Google Scholar 

  28. Paerl, H.W., and Merkel, S.M. 1982. Differential phosphorous assimilation in attached vs. unattached microorganisms. Arch. Hydrobiol. 93: 125–143.

    Google Scholar 

  29. Pancholy, S.K., and Lynd, J.Q. 1972. Quantitative fluorescence analysis of soil lipase activity. Soil Biol. Biochem. 4: 257–259.

    Article  CAS  Google Scholar 

  30. Porter, K.G., and Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic bacteria. Limn. Ocean. 25: 943–948.

    Article  Google Scholar 

  31. Rheinheimer, G. 1981. Investigations on the role of bacteria in the food web of the Western Baltic. Kiel. Meeresforsch. Spec. Publ. 5: 284–290.

    Google Scholar 

  32. Seki, H. 1970. Microbial biomass on particulate organic matter in seawater of the euphotic zone. Appl. Microbiol. 19: 960–962.

    PubMed  CAS  Google Scholar 

  33. Somville, M., and Billen, G. 1983. A method for determining exoproteasic activity in natural waters. Limn. Ocean. 28: 190–193.

    Article  CAS  Google Scholar 

  34. Sorokin, Y. 1970. Formation of aggregates by marine bacteria. Oceanography 192: 905–907 (translated from Russian).

    Google Scholar 

  35. Stevenson, L.H. 1978. A case for bacteria dormancy in aquatic systems. Microbial Ecol. 4: 127–133.

    Article  Google Scholar 

  36. Sugita, H.; Ishida, Y.; and Kadota, H. 1979. Kinetic analysis of promotive effects of Kaolin particles on growth of an aquatic bacterium. Bull. Jap. Soc. Sci. Fish. 45: 1381–1383.

    Article  CAS  Google Scholar 

  37. Velimirov, B.; Ott, J.A.; and Novak, R. 1981. Microorganisms on macrophyte debris: biodegradation and its implication in the food web. Kiel. Meeresforsch. Spec. Publ. 5: 333–344.

    CAS  Google Scholar 

  38. Wangersky, P.J. 1977. The role of particulate matter in the productivity of surface waters. Helg. W. Meer. 30: 546–564.

    Article  CAS  Google Scholar 

  39. Weise, W. 1975. Fluoreszenz- und Raster-Elektronenmikroskopische Untersuchungen über die Bakterienbesiedlung von marinen Sandsedimenten. Diploma Thesis, University of Kiel, F.R. Germany.

    Google Scholar 

  40. Weise, W., and Rheinheimer, G. 1979. Fluoreszenzmikroskopische Untersuchungen liber die Bakterienbesiedlung mariner Sandsedimente. Botan. Marin. 22: 99–106.

    Article  Google Scholar 

  41. Wiebe, W.J., and Pomeroy, L.R. 1972. Microorganisms and their association with aggregates and detritus in the sea: a microscopic study. Mem. 1st. Ital. Idrobiol. 29: 325–352.

    Google Scholar 

  42. Zimmermann, R. 1975. Entwicklung und Anwendung von fluoreszenz- und rasterelektronenmikroskopischen Methoden zur Ermittlung der Bakterienmenge in Wasserproben. Thesis, University of Kiel, F.R. Germany.

    Google Scholar 

  43. Zimmermann, R. 1977. Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy. In Microbial Ecology of a Brackish Water Environment, ed. G. Rheinheimer, pp. 103–120. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. C. Marshall

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Hoppe, HG. (1984). Attachment of Bacteria: Advantage or Disadvantage for Survival in the Aquatic Environment. In: Marshall, K.C. (eds) Microbial Adhesion and Aggregation. Life Sciences Research Reports, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70137-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70137-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70139-9

  • Online ISBN: 978-3-642-70137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics