Skip to main content

Utilization of Substrates and Transformation of Solid Substrata

  • Conference paper
Microbial Adhesion and Aggregation

Part of the book series: Life Sciences Research Reports ((DAHLEM LIFE,volume 31))

Abstract

Solid adsorbents which play a role in microbial adhesion influence the growth and metabolic activity of microorganisms and utilization of substrates. Usually, different adsorbents enhance the specific growth rate and molar growth yield in pure and mixed cultures of bacteria, actinomycetes, and fungi. In the dependence of the microorganisms tested, of adsorbents used, and of cultivation conditions maintained, stronger glycolytic or oxidative utilization of a carbon source can be observed. Formation of humic substances is generally increased. The mechanism of the effect of adsorbents on microbial utilization of substrates is very complex and includes the adsorption of cells, substrates, enzymes and other microbial metabolites, as well as degradation products. Electron transfer from cell to solid surface and the hydrophobicity of the solid surface may be involved. Different biotic and abiotic materials serve as solid substrata in microbial adhesion, and they can be transformed by microorganisms. Both superficial and substantial transformation may occur in which exoenzymes and other metabolic products are involved. Further analytical studies are necessary to elucidate the relationship between microorganisms and surfaces and how they influence microbial growth, utilization of different substrates, and transformation of solid substrata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rreferences

  1. Allen, M.J. 1966. The electrochemical aspect of some biochemical systems. VII. The current generating site in metabolizing E. coli systems. Electr. Act. 11: 7–13.

    CAS  Google Scholar 

  2. Allen, M.J. 1968. Cellular electrophysiology. XVIII. Coulokinetic behaviour of E. coli spheroplasts. Electr. Act. 15: 1565–1568.

    Google Scholar 

  3. Allen, M.J.; Bouwen, R.J.; Nicholson, M.; and Vasta, B.M. 1963. The electrochemical systems. III. A new approach to investigation of electrical energy producing reactions in biological systems. Electr. Act. 8: 991–995.

    Article  CAS  Google Scholar 

  4. Aristovskaya, T.V. 1971. The role of microorganisms in transformation of primary and secondary minerals. Fourth Meeting of the Soviet Soil Society, Trans. II, I: 238 (in Russian).

    Google Scholar 

  5. Aristovskaya, T.V.; Zykina, L.V.; and Sokolova, T.A. 1983. On the possibility of biogenic formation of aluminium hydroxide minerals in soils. Pochvovedenye (Moscow) , Nr. 9, pp. 67–73 (in Russian).

    Google Scholar 

  6. Ascaso, C.; Galvan, J.; and Rodrigues-Pascal, C. 1982. The weathering of calcareous rocks by lichens. Pedobiologia 24: 219–229.

    CAS  Google Scholar 

  7. Badura, L. 1965. On the mechanism of the “stimulating” influence of Na-humate upon the process of alcoholic fermentation and multiplication of yeast. Act. Soc. Bot. 34: 287.

    CAS  Google Scholar 

  8. Boyle, J.R., and Voigt, G.K. 1973. Biological weathering of silicate minerals. Implication for tree nutrition and soil genesis. Plant Soil 38: 191–201.

    Article  CAS  Google Scholar 

  9. Burns, R.G. 1980. Microbial adhesion to soil surfaces: consequences for growth and enzyme activities. In Microbial Adhesion to Surfaces, eds. R.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter, and B. Vincent, pp. 249–262. Chichester, England: Ellis Horwood.

    Google Scholar 

  10. Cavey, J.K. 1975. Isolation and characterization of wood inhabiting fungi. In Microbial Aspects of the Deterioration of Materials, eds. D.W. Lovelock and R.J. Gilbert, pp. 23–38. London, New York, San Francisco: Academic Press.

    Google Scholar 

  11. Danin, A., and Gerson, R. 1983. Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: Supporting evidence for eolian contribution to terra rossa soil. Soil Sci. 136: 213–217.

    Article  Google Scholar 

  12. Eckhardt, F.E.W. 1978. Microorganisms and weathering of the sandstone monument. In Environmental Biogeochemistry and Geomicrobiology, ed. W.E. Krumbein, vol. 2, pp. 675–686. Ann Arbor, MI: Ann Arbor Science Publishers.

    Google Scholar 

  13. Fazzani, K.; Furtado, S.E.J.; Eaton, R.A.; and Jones, E.B.G. 1975. Biodeterioration of timber in aquatic environments. In Microbial Aspects of the Deterioration of Materials, eds. D.W. Lovelock and R.J. Gilbert, pp. 39–58. London, New York, San Francisco: Academic Press.

    Google Scholar 

  14. Filip, Z. 1968. Development of microorganisms and humus substances formation in media with different content of bentonite. Pochvovedenye (Moscow), Nr. 9, pp. 55–61 (in Russian).

    Google Scholar 

  15. Filip, Z. 1969. A characteristic of humic substances in a soil incubated with additions of bentonite. Rostlin. Vyr. (Prague) 15: 377–390 (in Czech).

    CAS  Google Scholar 

  16. Filip, Z. 1969. Die Ammonisierungsaktivität der Bodenmikroflora in einer Umwelt mit verschiedenem Bentonitgehalt. Zbl. Bakteriol. IIAbt. 123; 616–621.

    CAS  Google Scholar 

  17. Filip, Z. 1970. Über die Beeinflussung der Bodenmikroorganismen, der Huminstoffbildung und der Krümelung von Bodenproben durch Bentonit. Landbau. Völ. 20: 91–96.

    CAS  Google Scholar 

  18. Filip, Z. 1973. Clay minerals as a factor influencing the biochemical activity of soil microorganisms. Fol. Microbiol. 18: 56–74.

    Article  CAS  Google Scholar 

  19. Filip, Z. 1975. Wechselbeziehungen zwischen Mikroorganismen und Tonmineralien und ihre Auswirkung auf die Bodendynamik. Habilitationsschrift, University of Giessen.

    Google Scholar 

  20. Filip, Z. 1978a. Decomposition of polyurethane in a garbage landfill leakage water and by soil microorganisms. Eur. J. Appl. Microbiol. 5: 225–231.

    Article  CAS  Google Scholar 

  21. Filip, Z. 1978b. Effect of solid particles on the growth and endurance to heat stress of garbage compost microorganisms. Eur. J. Appl. Microbiol, 6: 87–94.

    Article  Google Scholar 

  22. Filip, Z. 1979. Polyurethane as the sole nutrient source for Aspergillus niger and Cladosporium herbarum. Eur. J. Appl. Microbiol. 7: 277–280.

    Article  CAS  Google Scholar 

  23. Filip, Z. 1979. Wechselwirkungen von Mikroorganismen und Tonmineralien - eine übersicht. Z. Pflanz. B. 142: 375–386.

    Article  CAS  Google Scholar 

  24. Filip, Z.; Flaig, W.; and Rietz, E. 1977. Oxidation of some phenolic substances as influenced by clay minerals. Jn Soil Organic Matter Studies, vol. II, pp. 91–96. Vienna: International Atomic Energy Agency.

    Google Scholar 

  25. Filip, Z.; Haider, K.; and Martin, J.P. 1972a. Influence of clay minerals on growth and metabolic activity of Epicoccum nigrum and Stachybotrys chartarum. Soil Biol. Biochem. 4: 135–145.

    Article  CAS  Google Scholar 

  26. Filip, Z.; Haider, K.; and Martin, J.P. 1972b. Influence of clay minerals on the formation of humic substances by Epicoccum nigrum and Stachybotrys chartarum. Soil Biol. Biochem. 4: 147–154.

    Article  CAS  Google Scholar 

  27. Gill, C.O., and Newton, K.G. 1978. Ecology of meat spoilage at chill temperatures. In Microbial Ecology, eds. M.W. Loutit and J.A.R. Miles, pp. 443–447. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  28. Haider, K.; Filip, Z.; and Martin, J.P. 1970. Einfluss von Montmorillonit auf die Bildung von Biomasse und Stoffwechselprodukten durch einige Mikroorganismen. Arch. Mikrob. 73: 201–215.

    Article  CAS  Google Scholar 

  29. Haider, K.; Filip, Z.; and Martin, J.P. 1971. Action of clay minerals on different metabolic processes of soil fungi. In Studies About Humus, Transactions of the International Symposium “Humus et Planta V.” Prague: UVTI.

    Google Scholar 

  30. Haider, K.; Martin, J.P.; and Filip, Z. 1975. Humus biochemistry. In Soil Biochemistry, eds. E.A. Paul and A.D. McLaren, vol. 4, pp. 195–244. New York: Dekker.

    Google Scholar 

  31. Hattori, R. 1972. Growth of E. coli on the surface of anion-exchange resin in continous flow system. J. Gen. Appl. Microbiol. 18: 319–330.

    Article  CAS  Google Scholar 

  32. Hattori, R. 1976. Growth and spore formation of B. subtilis adsorbed on an anion-exchange resin. J. Gen. Appl. Microbiol. 22: 215–226.

    Article  Google Scholar 

  33. Hattori, R., and Hattori, T. 1963. Effect of a liquid-solid surface on the life of microorganisms. Ecol. Rev. 16: 63–70.

    Google Scholar 

  34. Hattori, R., and Hattori, T. 1981. Growth rate and molecular growth yield of E. *coli adsorbed on anion-exchange resin. J. Gen. Appl. Microbiol. 27: 287–293.

    Article  Google Scholar 

  35. Hattori, R.; Hattori, T.; and Furusaka, C. 1972a. Growth of bacteria on the surface of anion-exchange resin. I. Experiment with batch culture. J. Gen. Appl. Microbiol. 18: 271–283.

    Article  CAS  Google Scholar 

  36. Hattori, R.; Hattori, T.; and Furusaka, C. 1972b. Growth of bacteria on the surface of anion-exchange resin. II. Electron microscopic observation of adsorbed cells on the resin surface by carbon replica method. J. Gen. Appl. Microbiol. 18: 285–293.

    Article  Google Scholar 

  37. Hattori, T. 1973. The Microbial Life in the Soil, pp. 215–216. New York: Dekker.

    Google Scholar 

  38. Hattori, T., and Furusaka, C. 1960. Chemical activity of E. coli adsorbed on a resin. J. Biochem. (Tokyo) 48: 831–837.

    CAS  Google Scholar 

  39. Hattori, T., and Furusaka, C. 1961. Chemical activities of A. agile adsorbed on a resin. J. Biochem. (Tokyo) 50: 312–315.

    CAS  Google Scholar 

  40. Josephson, J. 1982. Humic substances. Envir. Sci. Technol. 16: 20A-24A.

    Google Scholar 

  41. Kas, V. 1966. Mikroorganismen im Boden, pp. 182–189. Wittenberg Lutherstadt: Ziemsen Verlag.

    Google Scholar 

  42. Kutuzova, R.S. 1971. The role of microorganisms in the weathering of silica compounds in acidic and alkalinic soils. Fourth Meeting of the Soviet Soil Science Society, Trans. II, I: 240 (in Russian) .

    Google Scholar 

  43. Kyuma, K., and Kawaguchi, K. 1964. Oxidative changes of polyphenols as influenced by allophane. Soil Sci. Soc. (Japan) 28: 371.

    Article  CAS  Google Scholar 

  44. Martin, J.P.; Filip, Z.; and Haider, K. 1976. Efect of montmorillonite and humate on growth and metabolic activity of some actinomycetes. Soil Biol. Biochem. 8: 409–413.

    Article  CAS  Google Scholar 

  45. Meyer, F.H. 1970. Abbau von Pilzmycel im Boden. Z. Pflanz. B. 127: 193–199.

    Article  Google Scholar 

  46. Miller, J.A.D., and King, R.A. 1975. Biodeterioration of metals. In Microbial Aspects of the Deterioration of Materials, eds. R.J. Gilbert and D.W. Lovelock, pp. 83–104. London, New York, San Francisco: Academic Press.

    Google Scholar 

  47. Monod, J. 1942. Recherches sur la croissance des cultures bacteriennes. Paris: Hermann Press.

    Google Scholar 

  48. Morisaki, H. 1982. The electric current from E. coli and the effect of resin on it. J. Gen. Appl. Microbiol. 28: 73–86.

    Article  Google Scholar 

  49. Morisaki, H. 1983. Effect of solid-liquid interface on metabolic activity of E. coli. J. Gen. Appl. Microbiol. 29: 195–204.

    Article  CAS  Google Scholar 

  50. Nesbitt, H.J.; Malajczuk, N.; and Glenn, A.R. 1978. Bacterial colonization of Phytophtora cinnamoni Rands. In Microbial Ecology, eds. M.W. Loutit and J.A.R. Miles, pp. 371–375. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  51. Ørstavik, D. 1980. Salivary factors in initial plaque formation. In Microbial Adhesion to Surfaces, eds. R.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter, and B. Vincent, pp. 407–423. Chichester, England: Ellis Horwood.

    Google Scholar 

  52. Paecht-Horowitz, M. 1973. Die Entstehung des Lebens. Angew. Chem. 85: 422–430.

    Article  CAS  Google Scholar 

  53. Rutter, P. 1979. The accumulation of organisms on the teeth. In Adhesion of Microorganisms to Surfaces, eds. D.C. Ellwood, J. Melling, and P. Rutter, pp. 139–164. London, New York, San Francisco: Academic Press.

    Google Scholar 

  54. Scheffer, F., and Kroll, W. 1960. Die Bedeutung nicht-metallischer Oxyde im organischen Stoffkreislauf des Bodens unter besonderer Berücksichtigung des katalytischen Einflusses der Kieselsaure auf Huminsäureauf - und abbaureaktionen. Agrochimica 4: 97.

    Google Scholar 

  55. Slots, J., and Gibbons, R.J. 1978. Attachment of Bacteriodes melaninogenicus subsp. asaccharolyticus to oral surfaces and its possible role in colonization of the mouth and periodontal pockets. Infec. Immun. 19: 254–264.

    CAS  Google Scholar 

  56. Stotzky, G. 1974. Activity, ecology, and population dynamics of microorganisms in soil. In Microbial Ecology, eds. A.I. Laskin and H. Lechevaliere, pp. 57–135. Cleveland, OH: CRC Press.

    Google Scholar 

  57. Stotzky, G. 1980. Surface interaction between clay minerals and microbes, viruses, and soluble organics, and the probable importance of these interactions to the ecology of microbes in soil. In Microbial Adhesion to Surfaces, eds. R.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter, and B. Vincent, pp. 231–247. Chichester, England: Ellis Horwood.

    Google Scholar 

  58. Sushkina, N.N., and Tsiyurupa, I.G. 1973. Microflora and the Primary Soil Forming Process. Moscow: Izdatelstvo Moskovskogo Univerziteta (in Russian).

    Google Scholar 

  59. Waksman, S., and Iyer, K.R.N. 1932. Contribution to our knowledge of the chemical nature and origin of humus. II. The influence of “synthesized” humus compounds and of “natural” humus upon soil microbial processes. Soil Sci. 34: 43.

    Article  CAS  Google Scholar 

  60. Zvyagintsev, D.G. 1973. Interactions of Microorganisms and Solid Surfaces. Moscow: Izdatelstvo Moskovskogo Univerziteta (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. C. Marshall

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Filip, Z., Hattori, T. (1984). Utilization of Substrates and Transformation of Solid Substrata. In: Marshall, K.C. (eds) Microbial Adhesion and Aggregation. Life Sciences Research Reports, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70137-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70137-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70139-9

  • Online ISBN: 978-3-642-70137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics