Skip to main content

A Computational Framework for the Study of Confidence Across Species

  • Chapter
  • First Online:
The Cognitive Neuroscience of Metacognition

Abstract

Confidence judgments, the self-assessment of the quality of a subject’s knowledge, are considered a central example of metacognition. Prima facie, introspection, and self-report appear the only way to access the subjective sense of confidence or uncertainty. Could confidence be also studied in nonhuman animals so one could probe its neural substrates? Indeed, behavioral paradigms that incentivize animals to evaluate and act upon their own confidence can yield implicit reports of confidence. Here, we suggest that a computational approach can clarify the issues involved in interpreting these tasks and provide a much-needed springboard for advancing the scientific understanding of confidence. We first review relevant theories of probabilistic inference and decision making. We then critically discuss behavioral tasks employed to measure confidence in animals and show how quantitative models can help to constrain the computational strategies underlying confidence-reporting behaviors. In our view, post-decision wagering tasks with continuous measures of confidence appear to offer the best available metrics of confidence. Since behavioral reports alone provide a limited window into mechanism, we argue that progress calls for measuring the neural representations and identifying the computations underlying confidence reports. We present a case study using such a computational approach to study the neural correlates of decision confidence in rats. This work shows that confidence assessments may be considered higher order, but can be generated using elementary neural computations that are available to a wide range of species. Finally, we discuss the relationship of confidence judgments to the broader behavioral uses of confidence and uncertainty.

This chapter is adapted from: Kepecs A, Mainen ZF (2012) A computational framework for the study of confidence in humans and animals. Phil Trans R Soc B 367:1322–1337

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flavell JH (1979) Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. Am Psychol 34:906–911

    Google Scholar 

  2. Metcalfe J, Shimamura AP (1994) Metacognition: knowing about knowing. MIT Press, Cambridge

    Google Scholar 

  3. Bjork RA (1994) Memory and metamemory considerations in the training of human beings. In: Metacognition: knowing about knowing. MIT Press, Cambridge

    Google Scholar 

  4. Metcalfe J (2008) Evolution of metacognition. In: Handbook of metamemory and memory, pp 185–205, 29–46

    Google Scholar 

  5. Smith JD, Shields WE, Washburn DA (2003) The comparative psychology of uncertainty monitoring and metacognition. Behav Brain Sci 26:317–339 (discussion 340–373)

    PubMed  Google Scholar 

  6. Cox DR (2006) Principles of statistical inference. Cambridge University Press, Cambridge

    Google Scholar 

  7. Zemel RS, Dayan P, Pouget A (1998) Probabilistic interpretation of population codes. Neural Comput 10:403–430

    CAS  PubMed  Google Scholar 

  8. Rao RPN, Olshausen BA, Lewicki MS (2002) Probabilistic models of the brain: perception and neural function. The MIT Press, Cambridge

    Google Scholar 

  9. Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719

    CAS  PubMed  Google Scholar 

  10. Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes. Nat Neurosci 9:1432–1438

    CAS  PubMed  Google Scholar 

  11. Rao RP (2004) Bayesian computation in recurrent neural circuits. Neural Comput 16:1–38

    PubMed  Google Scholar 

  12. Higham PA (2007) No special K! A signal detection framework for the strategic regulation of memory accuracy. J Exp Psychol Gen 136:1–22

    PubMed  Google Scholar 

  13. Charles L, Van Opstal F, Marti S, Dehaene S (2013) Distinct brain mechanisms for conscious versus subliminal error detection. Neuroimage 73:80–94

    PubMed  Google Scholar 

  14. McCurdy LY, Maniscalco B, Metcalfe J, Liu KY, de Lange FP, Lau H (2013) Anatomical coupling between distinct metacognitive systems for memory and visual perception. J Neurosci 33:1897–1906

    CAS  PubMed  Google Scholar 

  15. Johnson DM (1939) Confidence and speed in the two-category judgment. Columbia University, Ney York

    Google Scholar 

  16. Festinger L (1943) Studies in decision: I. Decision-time, relative frequency of judgment and subjective confidence as related to physical stimulus difference. J Exp Psychol 32:291–306

    Google Scholar 

  17. Baranski JV, Petrusic WM (1994) The calibration and resolution of confidence in perceptual judgments. Percept Psychophys 55:412–428

    CAS  PubMed  Google Scholar 

  18. Fleming SM, Weil RS, Nagy Z, Dolan RJ, Rees G (2010) Relating introspective accuracy to individual differences in brain structure. Science 329:1541–1543

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Yokoyama O, Miura N, Watanabe J, Takemoto A, Uchida S, Sugiura M, Horie K, Sato S, Kawashima R, Nakamura K (2010) Right frontopolar cortex activity correlates with reliability of retrospective rating of confidence in short-term recognition memory performance. Neurosci Res 68:199–206

    PubMed  Google Scholar 

  20. Fleming SM, Huijgen J, Dolan RJ (2012) Prefrontal contributions to metacognition in perceptual decision making. J Neurosci 32:6117–6125

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Gigerenzer G, Hoffrage U, Kleinbolting H (1991) Probabilistic mental models: a Brunswikian theory of confidence. Psychol Rev 98:506–528

    CAS  PubMed  Google Scholar 

  22. Klayman J, Soll JB, González-Vallejo C, Barlas S (1999) Overconfidence: it depends on how, what, and whom you ask. Organ Behav Hum Decis Process 79:216–247

    PubMed  Google Scholar 

  23. Finn B (2008) Framing effects on metacognitive monitoring and control. Mem Cognit 36:813–821

    PubMed Central  PubMed  Google Scholar 

  24. Angell F (1907) On judgments of “like” in discrimination experiments. Am J Psychol 253–260

    Google Scholar 

  25. Watson CS, Kellogg SC, Kawanishi DT, Lucas PA (1973) The uncertain response in detection-oriented psychophysics. J Exp Psychol 99:180–185

    Google Scholar 

  26. Woodworth RS (1938) Experimental psychology. Henry Holt and Company Inc, New York

    Google Scholar 

  27. Peirce CS, Jastrow J (1885) On small differences of sensation. Mem Natl Acad Sci 3:73–83

    Google Scholar 

  28. George SS (1917) Attitude in relation to the psychophysical judgment. Am J Psychol 28:1–37

    Google Scholar 

  29. Smith JD, Schull J, Strote J, McGee K, Egnor R, Erb L (1995) The uncertain response in the bottlenosed dolphin (Tursiops truncatus). J Exp Psychol Gen 124:391–408

    CAS  PubMed  Google Scholar 

  30. Smith JD, Schull J (1989) A failure of uncertainty monitoring in the rat. (unpublished data)

    Google Scholar 

  31. Shields WE, Smith JD, Washburn DA (1997) Uncertain responses by humans and rhesus monkeys (Macaca mulatta) in a psychophysical same-different task. J Exp Psychol Gen 126:147–164

    CAS  PubMed  Google Scholar 

  32. Smith JD, Shields WE, Schull J, Washburn DA (1997) The uncertain response in humans and animals. Cognition 62:75–97

    CAS  PubMed  Google Scholar 

  33. Shields WE, Smith JD, Guttmannova K, Washburn DA (2005) Confidence judgments by humans and rhesus monkeys. J Gen Psychol 132:165–186

    PubMed  Google Scholar 

  34. Beran MJ, Smith JD, Redford JS, Washburn DA (2006) Rhesus macaques (Macaca mulatta) monitor uncertainty during numerosity judgments. J Exp Psychol Anim Behav Process 32:111–119

    PubMed  Google Scholar 

  35. Sole LM, Shettleworth SJ, Bennett PJ (2003) Uncertainty in pigeons. Psychon Bull Rev 10:738–745

    PubMed  Google Scholar 

  36. Komura Y, Nikkuni A, Hirashima N, Uetake T, Miyamoto A (2013) Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat Neurosci 16:749–755

    CAS  PubMed  Google Scholar 

  37. Smith JD, Beran MJ, Redford JS, Washburn DA (2006) Dissociating uncertainty responses and reinforcement signals in the comparative study of uncertainty monitoring. J Exp Psychol Gen 135:282–297

    PubMed  Google Scholar 

  38. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  39. Hampton RR (2001) Rhesus monkeys know when they remember. Proc Natl Acad Sci USA 98:5359–5362

    CAS  PubMed  Google Scholar 

  40. Kiani R, Shadlen MN (2009) Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324:759–764

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Inman A, Shettleworth SJ (1999) Detecting metameory in nonverbal subjects: a test with pigeon. J Exp Psychol Anim Behav Process 25:389–395

    Google Scholar 

  42. Teller SA (1989) Metamemory in the pigeon: prediction of performance on a delayed matching to sample task. Reed College

    Google Scholar 

  43. Sutton JE, Shettleworth SJ (2008) Memory without awareness: pigeons do not show metamemory in delayed matching to sample. J Exp Psychol Anim Behav Process 34:266

    PubMed  Google Scholar 

  44. Foote AL, Crystal JD (2007) Metacognition in the rat. Curr Biol 17:551–555

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Kepecs A (2013) The uncertainty of it all. Nat Neurosci 16:660–662

    CAS  PubMed  Google Scholar 

  46. Persaud N, McLeod P, Cowey A (2007) Post-decision wagering objectively measures awareness. Nat Neurosci 10:257–261

    CAS  PubMed  Google Scholar 

  47. Persaud N, McLeod P (2008) Wagering demonstrates subconscious processing in a binary exclusion task. Conscious Cogn 17:565–575

    PubMed  Google Scholar 

  48. Sahraie A, Weiskrantz L, Barbur JL (1998) Awareness and confidence ratings in motion perception without geniculo-striate projection. Behav Brain Res 96:71–77

    CAS  PubMed  Google Scholar 

  49. Rajaram S, Hamilton M, Bolton A (2002) Distinguishing states of awareness from confidence during retrieval: evidence from amnesia. Cognitive, Affect Behav Neurosci 2:227–235

    Google Scholar 

  50. Son LK, Kornell N (2005) Meta-confidence judgments in rhesus macaques: explicit versus implicit mechanisms. In: Terrace HS, Metcalfe J (eds) The missing link in cognition: origins of self-reflective consciousness. Oxford University Press, Oxford, pp 296–320

    Google Scholar 

  51. Kornell N, Son LK, Terrace HS (2007) Transfer of metacognitive skills and hint seeking in monkeys. Psychol Sci 18:64–71

    PubMed  Google Scholar 

  52. Middlebrooks PG, Sommer MA (2010) Metacognition in monkeys during an oculomotor task. J Exp Psychol Learn Mem Cogn 37:325–337

    Google Scholar 

  53. Middlebrooks PG, Sommer MA (2012) Neuronal correlates of metacognition in primate frontal cortex. Neuron 75:517–530

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Clifford CW, Arabzadeh E, Harris JA (2008) Getting technical about awareness. Trends Cogn Sci 12:54–58

    PubMed  Google Scholar 

  55. Fleming SM, Dolan RJ (2010) Effects of loss aversion on post-decision wagering: implications for measures of awareness. Conscious Cogn 19:352–363

    PubMed Central  PubMed  Google Scholar 

  56. Schurger A, Sher S (2008) Awareness, loss aversion, and post-decision wagering. Trends Cogn Sci 12:209–210 (author reply 210)

    PubMed  Google Scholar 

  57. Kepecs A, Uchida N, Zariwala HA, Mainen ZF (2008) Neural correlates, computation and behavioural impact of decision confidence. Nature 455:227–231

    CAS  PubMed  Google Scholar 

  58. Call J, Carpenter M (2001) Do apes and children know what they have seen? Animal Cognition 3:207–220

    Google Scholar 

  59. Hampton RR, Zivin A, Murray EA (2004) Rhesus monkeys (Macaca mulatta) discriminate between knowing and not knowing and collect information as needed before acting. Anim Cogn 7:239–246

    PubMed  Google Scholar 

  60. Radecki CM, Jaccard J (1995) Perceptions of knowledge, actual knowledge, and information search behavior. J Exp Soc Psychol 31:107–138

    Google Scholar 

  61. Basile BM, Hampton RR, Suomi SJ, Murray EA (2009) An assessment of memory awareness in tufted capuchin monkeys (Cebus apella). Anim Cogn 12:169–180

    PubMed Central  PubMed  Google Scholar 

  62. Brauer J, Call J, Tomasello M (2007) Chimpanzees really know what others can see in a competitive situation. Anim Cogn 10:439–448

    PubMed  Google Scholar 

  63. Suda-King C (2008) Do orangutans (Pongo pygmaeus) know when they do not remember? Anim Cogn 11:21–42

    PubMed  Google Scholar 

  64. Brauer J, Call J, Tomasello M (2004) Visual perspective taking in dogs (Canis familiaris) in the presence of barriers. Appl Anim Behav Sci 88:299–317

    Google Scholar 

  65. Brauer J, Kaminski J, Riedel J, Call J, Tomasello M (2006) Making inferences about the location of hidden food: social dog, causal ape. J Comp Psychol 120:38–47

    PubMed  Google Scholar 

  66. Bromberg-Martin ES, Hikosaka O (2009) Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63:119–126

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Shettleworth SJ, Sutton JE (2003) Metacognition in animals: it’s all in the methods. Behav Brain Sci 23:353–354

    Google Scholar 

  68. Smith JD, Beran MJ, Couchman JJ, Coutinho MV (2008) The comparative study of metacognition: sharper paradigms, safer inferences. Psychon Bull Rev 15:679–691

    PubMed  Google Scholar 

  69. Schwartz BL, Metcalfe J (1994) Methodological problems and pitfalls in the study of human metacognition. In: Metacognition: knowing about knowing 93–113

    Google Scholar 

  70. Kornell N (2009) Metacognition in humans and animals. Curr Dir Psychol Sci 18:11–15

    Google Scholar 

  71. Washburn DA, Smith JD, Shields WE (2006) Rhesus monkeys (Macaca mulatta) immediately generalize the uncertain response. J Exp Psychol Anim Behav Process 32:185–189

    PubMed  Google Scholar 

  72. Metcalfe J (2004) Drawing the line on metacognition. Behav Brain Sci 26:350–351

    Google Scholar 

  73. Glimcher PW (2008) Understanding risk: a guide for the perplexed. Cogn Affect Behav Neurosci 8:348–354

    PubMed  Google Scholar 

  74. Gold JI, Shadlen MN (2001) Neural computations that underlie decisions about sensory stimuli. Trends Cogn Sci 5:10–16

    PubMed  Google Scholar 

  75. Dayan P, Daw ND (2008) Decision theory, reinforcement learning, and the brain. Cogn Affect Behav Neurosci 8:429–453

    PubMed  Google Scholar 

  76. Juslin P, Olsson H (1997) Thurstonian and Brunswikian origins of uncertainty in judgment: a sampling model of confidence in sensory discrimination. Psychol Rev 104:344–366

    CAS  PubMed  Google Scholar 

  77. Vickers D, Pietsch A (2001) Decision making and memory: a critique of Juslin and Olsson’s (1997) sampling model of sensory discrimination. Psychol Rev 108:789–804

    CAS  PubMed  Google Scholar 

  78. Knight F (1921) Risk, ambiguity, and profit. Houghton Mifflin, Boston

    Google Scholar 

  79. Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF (2005) Neural systems responding to degrees of uncertainty in human decision-making. Am Assoc Adv Sci 310:1680–1683

    CAS  Google Scholar 

  80. Glimcher PW (2003) Decisions, uncertainty, and the brain: the science of neuroeconomics. MIT Press, Cambridge

    Google Scholar 

  81. McCoy AN, Platt ML (2005) Risk-sensitive neurons in macaque posterior cingulate cortex. Nat Neurosci 8:1220–1227

    CAS  PubMed  Google Scholar 

  82. Platt ML, Huettel SA (2008) Risky business: the neuroeconomics of decision making under uncertainty. Nat Neurosci 11:398–403

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, London

    Google Scholar 

  84. Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci 21:227–277

    CAS  PubMed  Google Scholar 

  85. Maniscalco B, Lau H (2012) A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Conscious Cogn 21:422–430

    PubMed  Google Scholar 

  86. Kepecs A, Mainen ZF (2012) A computational framework for the study of confidence in humans and animals. Philos Trans R Soc Lond B Biol Sci 367:1322–1337

    PubMed  Google Scholar 

  87. Vickers D (1970) Evidence for an accumulator model of psychophysical discrimination. Ergonomics 13:37–58

    CAS  PubMed  Google Scholar 

  88. Moreno-Bote R (2010) Decision confidence and uncertainty in diffusion models with partially correlated neuronal integrators. Neural Comput 22:1786–1811

    PubMed  Google Scholar 

  89. Zylberberg A, Barttfeld P, Sigman M (2012) The construction of confidence in a perceptual decision. Front Integr Neurosci 6:79

    PubMed  Google Scholar 

  90. Rolls ET, Grabenhorst F, Deco G (2010) Decision-making, errors, and confidence in the brain. J Neurophysiol 104:2359–2374

    PubMed  Google Scholar 

  91. Insabato A, Pannunzi M, Rolls ET, Deco G (2010) Confidence-related decision making. J Neurophysiol 104:539–547

    PubMed  Google Scholar 

  92. Sollich P (2002) Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach Learn 46:21–52

    Google Scholar 

  93. Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural integrators in perceptual decision making. Cereb Cortex 13:1257–1269

    PubMed  Google Scholar 

  94. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev 113:700–765

    PubMed  Google Scholar 

  95. Vickers D, Packer J (1982) Effects of alternating set for speed or accuracy on response time, accuracy and confidence in a unidimensional discrimination task. Acta Psychol (Amst) 50:179–197

    CAS  Google Scholar 

  96. Tong S, Koller D (2002) Support vector machine active learning with applications to text classification. J Mach Learn Res 2:45–66

    Google Scholar 

  97. Rolls ET, Grabenhorst F, Deco G (2010) Choice, difficulty, and confidence in the brain. Neuroimage 53:694–706

    PubMed  Google Scholar 

  98. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968

    CAS  PubMed  Google Scholar 

  99. Timmermans B, Schilbach L, Pasquali A, Cleeremans A (2012) Higher order thoughts in action: consciousness as an unconscious re-description process. Philos Trans R Soc Lond B Biol Sci 367:1412–1423

    PubMed  Google Scholar 

  100. Juslin P, Olsson H (1999) Computational models of subjective probability calibration. In Juslin P, Montgomery H (eds) Judgment and decision-making: Neo-Brunswickian and process-tracing approaches. Lawrence Erlbaum Associates Inc., Mahwah NJ

    Google Scholar 

  101. Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441:876–879

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Cohen JD, McClure SM, Yu AJ (2007) Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos Trans R Soc B: Biol Sci 362:933

    Google Scholar 

  103. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Corrado G, Doya K (2007) Understanding neural coding through the model-based analysis of decision making. J Neurosci 27:8178

    CAS  PubMed  Google Scholar 

  105. Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the representation of value in the parietal cortex. Science 304:1782–1787

    CAS  PubMed  Google Scholar 

  106. Barraclough DJ, Conroy ML, Lee D (2004) Prefrontal cortex and decision making in a mixed-strategy game. Nat Neurosci 7:404–410

    CAS  PubMed  Google Scholar 

  107. Lau B, Glimcher PW (2005) Dynamic response-by-response models of matching behavior in rhesus monkeys. J Exp Anal Behav 84:555–579

    PubMed  Google Scholar 

  108. Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244

    PubMed  Google Scholar 

  109. Schoenbaum G, Roesch M (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47:633–636

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Elliott R, Friston KJ, Dolan RJ (2000) Dissociable neural responses in human reward systems. J Neurosci 20:6159–6165

    CAS  PubMed  Google Scholar 

  111. Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci 30:31–56

    CAS  PubMed  Google Scholar 

  112. Mainen ZF, Kepecs A (2009) Neural representation of behavioral outcomes in the orbitofrontal cortex. Curr Opin Neurobiol 19:84–91

    CAS  PubMed  Google Scholar 

  113. Maunsell JH (2004) Neuronal representations of cognitive state: reward or attention? Trends Cogn Sci 8:261–265

    PubMed  Google Scholar 

  114. Kahneman D, Slovic P, Tversky A (1982) Judgment under uncertainty: heuristics and biases. Cambridge University Press, Cambridge; New York

    Google Scholar 

  115. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable stochastic domains. Artif Intell 101:99–134

    Google Scholar 

  116. Volz KG, Schubotz RI, von Cramon DY (2005) Variants of uncertainty in decision-making and their neural correlates. Brain Res Bull 67:403–412

    PubMed  Google Scholar 

  117. Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46:681–692

    CAS  PubMed  Google Scholar 

  118. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711

    CAS  PubMed  Google Scholar 

  119. Fleming SM, Dolan RJ, Frith CD (2012) Metacognition: computation, biology and function. Philos Trans R Soc Lond B Biol Sci 367:1280–1286

    PubMed  Google Scholar 

  120. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  121. Bernstein C, Kacelnik A, Krebs JR (1988) Individual decisions and the distribution of predators in a patchy environment. J Anim Ecol 57:1007–1026

    Google Scholar 

  122. Hayden BY, Pearson JM, Platt ML (2011) Neuronal basis of sequential foraging decisions in a patchy environment. Nat Neurosci 14:933–939

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Kamil AC, Misthal RL, Stephens DW (1993) Failure of simple optimal foraging models to predict residence time when patch quality is uncertain. Behav Ecol 4:350–363

    Google Scholar 

  124. Nelson TO, Narens L (1990) Metamemory: a theoretical framework and new findings. Psychol Learn Motiv: Adv Res Theory 26:125–173

    Google Scholar 

  125. Son LK, Metcalfe J (2000) Metacognitive and control strategies in study-time allocation. J Exp Psychol Learn Mem Cogn 26:204–221

    CAS  PubMed  Google Scholar 

  126. Son LK (2004) Spacing one’s study: evidence for a metacognitive control strategy. J Exp Psychol Learn Mem Cogn 30:601–604

    PubMed  Google Scholar 

  127. Son LK, Sethi R (2006) Metacognitive control and optimal learning. Cogn Sci: Multi J 30:759–774

    Google Scholar 

  128. Schohn G, Cohn D (2000) Less is more: active learning with support vector machines. In: Machine learning-international workshop then conference, pp 839–846

    Google Scholar 

  129. Sutton RS (1992) Gain adaptation beats least squares. In: Proceedings of the 7th Yale workshop on adaptive and learning systems, pp 161–166

    Google Scholar 

  130. Dayan P, Kakade S (2001) Explaining away in weight space. Advances in neural information processing systems, pp 451–457

    Google Scholar 

  131. Pearce JM, Hall G (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552

    CAS  PubMed  Google Scholar 

  132. Courville AC, Daw ND, Touretzky DS (2006) Bayesian theories of conditioning in a changing world. Trends Cogn Sci 10:294–300

    PubMed  Google Scholar 

  133. Dearden R, Friedman N, Russell S (1998) Bayesian Q-learning. In: Proceedings of the national conference on artificial intelligence. Wiley, pp 761–768

    Google Scholar 

  134. Strens M (2000) A Bayesian framework for reinforcement learning. In: Machine learning-international workshop then conference, pp 943–950

    Google Scholar 

  135. Knight FH (1921) Risk, uncertainty and profit. Boston and New York

    Google Scholar 

  136. Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    PubMed  Google Scholar 

  137. Körding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247

    PubMed  Google Scholar 

  138. Graf EW, Warren PA, Maloney LT (2005) Explicit estimation of visual uncertainty in human motion processing. Vision Res 45:3050–3059

    PubMed  Google Scholar 

  139. Körding KP, Wolpert DM (2006) Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10:319–326

    PubMed  Google Scholar 

  140. Deneve S (2008) Bayesian spiking neurons I: inference. Neural Comput 20:91–117

    PubMed  Google Scholar 

  141. Bang D, Mahmoodi A, Olsen K, Roepstorff A, Rees G, Frith C, Bahrami B (2014) What failure in collective decision-making tells us about metacognition. In: Fleming SM, Frith C (eds) The cognitive neuroscience of metacognition. Springer, Berlin

    Google Scholar 

  142. Montague PR, Berns GS (2002) Neural economics and the biological substrates of valuation. Neuron 36:265–284

    CAS  PubMed  Google Scholar 

  143. Sugrue LP, Corrado GS, Newsome WT (2005) Choosing the greater of two goods: neural currencies for valuation and decision making. Nat Rev Neurosci 6:363–375

    CAS  PubMed  Google Scholar 

  144. Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–226

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to our collaborators and members of our groups for discussions. Preparation of this article was supported by the Klingenstein, Sloan, Swartz, and Whitehall Foundations to A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Kepecs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kepecs, A., Mainen, Z.F. (2014). A Computational Framework for the Study of Confidence Across Species. In: Fleming, S., Frith, C. (eds) The Cognitive Neuroscience of Metacognition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45190-4_6

Download citation

Publish with us

Policies and ethics