Skip to main content

Using Optimal Control Methods to Generate Human Walking Motions

  • Conference paper
Motion in Games (MIG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Included in the following conference series:

Abstract

The generation of realistic motions for articulated characters using physical simulation has been the focus of many research efforts. Numerous systems focus on creating real-time controllers that allow for believable motions of characters within games that often use reference trajectories that the character tries to replicate. In this paper we describe an off-line method that uses open-loop optimal-control schemes to generate bipedal walking motions for characters in 2D. The resulting motions could then be used as reference trajectories for character controllers. This approach allows us to obtain different styles of motions by using different objective criteria without the use of any prerecorded data. We present the optimal control problem formulation and the direct multiple shooting method that efficiently solves this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. Proceedings of the Royal Society B: Biological Sciences 273(1603), 2861–2867 (2006)

    Article  Google Scholar 

  2. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  3. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 Papers, p. 106. ACM, New York (2007)

    Google Scholar 

  4. Ren, C., Zhao, L., Safonova, A.: Human motion synthesis with optimization-based graphs. In: Computer Graphics Forum (Proc. of Eurographics 2010, Sweden), vol. 29 (2010)

    Google Scholar 

  5. Witkin, A., Kass, M.: Spacetime constraints. In: SIGGRAPH 1988: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 159–168. ACM, New York (1988)

    Chapter  Google Scholar 

  6. Popovic, Z., Witkin, A.: Physically based motion transformation. Computer Graphics (SIGGRAPH) (1999)

    Google Scholar 

  7. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22(3), 417–426 (2003)

    Article  Google Scholar 

  8. Sulejmanpašić, A., Popović, J.: Adaptation of performed ballistic motion. ACM Trans. Graph. 24(1), 165–179 (2005)

    Article  Google Scholar 

  9. Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics. In: SIGGRAPH 1995: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78. ACM, New York (1995)

    Chapter  Google Scholar 

  10. Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004)

    Article  Google Scholar 

  11. Wei, X., Min, J., Chai, J.: Physically valid statistical models for human motion generation. ACM Trans. Graph. 30(3), 19:1–19:10 (2011)

    Google Scholar 

  12. Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Transactions on Graphics (SIGGRAPH) 26(3) (2007)

    Google Scholar 

  13. Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics 28(3) (2009)

    Google Scholar 

  14. Yin, K., Loken, K., van de Panne, M.: Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26(3), Article 105 (2007)

    Google Scholar 

  15. Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers for uncertain inputs and environments. ACM Trans. Graph. 29(4), 73:1–73:8 (2010)

    Google Scholar 

  16. Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Trans. Graph. 29(4), 130:1–130:9 (2010)

    Google Scholar 

  17. de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-Based Locomotion Controllers. ACM Transactions on Graphics 29(3) (2010)

    Google Scholar 

  18. Nakamura, Y., Mori, T., Aki Sato, M., Ishii, S.: Reinforcement learning for a biped robot based on a cpg-actor-critic method. Neural Networks 20(6), 723–735 (2007)

    Article  MATH  Google Scholar 

  19. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  20. Schultz, G., Mombaur, K.: Modeling and optimal control of human-like running. To Appear in IEEE/ASME Transactions on Mechatronics (2010)

    Google Scholar 

  21. Mombaur, K.: Using optimization to create self-stable human-like running. Robotica 27, 321–330 (2009, published online June 2008)

    Google Scholar 

  22. de Leva, P.: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. Journal of Biomechanics 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  23. Felis, M.L.: RBDL - the Rigid Body Dynamics Library (2012), http://rbdl.bitbucket.org

  24. Leineweber, D.B., Bauer, I., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical aspects. Computers and Chemical Engineering 27, 157–166 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felis, M.L., Mombaur, K. (2012). Using Optimal Control Methods to Generate Human Walking Motions. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics