Skip to main content

Glycine Transport Inhibitors in the Treatment of Schizophrenia

  • Chapter
  • First Online:
Novel Antischizophrenia Treatments

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 213))

Abstract

Schizophrenia is a severe neuropsychiatric disorder without adequate current treatment. Recent theories of schizophrenia focus on disturbances of glutamatergic neurotransmission particularly at N-methyl-d-aspartate (NMDA)-type glutamate receptors. NMDA receptors are regulated in vivo by the amino acids glycine and d-serine. Glycine levels, in turn, are regulated by glycine type I (GlyT1) transporters, which serve to maintain low subsaturating glycine levels in the vicinity of the NMDA receptor. A proposed approach to treatment of schizophrenia, therefore, is inhibition of GlyT1-mediated transport. Over the past decade, several well tolerated, high affinity GlyT1 inhibitors have been developed and shown to potentiate NMDA receptor-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GlyT1 inhibitor, and with the high affinity compound RG1678. Although definitive trials remain ongoing, encouraging results to date have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel KM, Allin MP, Hemsley DR, Geyer MA (2003a) Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Article  PubMed  CAS  Google Scholar 

  • Abel KM, Allin MP, Kucharska-Pietura K, Andrew C, Williams S, David AS, Phillips ML (2003b) Ketamine and fMRI BOLD signal: distinguishing between effects mediated by change in blood flow versus change in cognitive state. Hum Brain Mapp 18:135–145

    Article  PubMed  Google Scholar 

  • Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry 43:811–816

    Article  PubMed  CAS  Google Scholar 

  • Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, Breier A (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    PubMed  CAS  Google Scholar 

  • Ahn KH, Youn T, Cho SS, Ha TH, Ha KS, Kim MS, Kwon JS (2003) N-methyl-D-aspartate receptor in working memory impairments in schizophrenia: event-related potential study of late stage of working memory process. Prog Neuropsychopharmacol Biol Psychiatry 27:993–999

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney W Jr, Jones EG (1996) Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 53:425–436

    Article  PubMed  CAS  Google Scholar 

  • Alberati D, Moreau JL, Mory R, Pinard E, Wettstein JG (2010) Pharmacological evaluation of a novel assay for detecting glycine transporter 1 inhibitors and their antipsychotic potential. Pharmacol Biochem Behav 97:185–191

    Article  PubMed  CAS  Google Scholar 

  • Altschule MD, Eldred SH, Sherman LJ, Giancola JN (1959) Blood glutathione and eosinophil levels and hospital adjustment scale in chronic schizophrenia. Arch Gen Psychiatry 1:358–365

    Article  CAS  Google Scholar 

  • Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A, Krystal JH (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 57:270–276

    Article  PubMed  CAS  Google Scholar 

  • Andersen JD, Pouzet B (2004) Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of D-serine. Neuropsychopharmacology 29:1080–1090

    Article  PubMed  CAS  Google Scholar 

  • Atkinson BN, DeVivo M, Lechner SM, Kowalski L, Zheng Y, Klitenick MA (2000) Characterization of ALX-5407, a GLYT1-selective reuptake inhibitor. Soc Neurosci Abs 26:1653

    Google Scholar 

  • Atkinson BN, Bell SC, De Vivo M, Kowalski LR, Lechner SM, Ognyanov VI, Tham CS, Tsai C, Jia J, Ashton D, Klitenick MA (2001) ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol Pharmacol 60:1414–1420

    PubMed  CAS  Google Scholar 

  • Aubrey KR, Vandenberg RJ (2001) N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS) is a selective persistent inhibitor of glycine transport. Br J Pharmacol 134:1429–1436

    Article  PubMed  CAS  Google Scholar 

  • Bagetta V, Ghiglieri V, Sgobio C, Calabresi P, Picconi B (2010) Synaptic dysfunction in Parkinson’s disease. Biochem Soc Trans 38:493–497

    Article  PubMed  CAS  Google Scholar 

  • Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

    Article  PubMed  Google Scholar 

  • Beneyto M, Meador-Woodruff JH (2008) Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology 33:2175–2186

    Article  PubMed  CAS  Google Scholar 

  • Bennett S, Gronier B (2005) Modulation of striatal dopamine release in vitro by agonists of the glycineB site of NMDA receptors; interaction with antipsychotics. Eur J Pharmacol 527:52–59

    Article  PubMed  CAS  Google Scholar 

  • Benveniste M, Mayer ML (1993) Multiple effects of spermine on N-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurones. J Physiol 464:131–163

    PubMed  CAS  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95:15730–15734

    Article  PubMed  CAS  Google Scholar 

  • Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S, Little J, Conus P, Cuenod M, Do KQ, Bush AI (2008) N-acetyl cysteine as a glutathione precursor for schizophrenia–a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 64:361–368

    Article  PubMed  CAS  Google Scholar 

  • Black MD, Varty GB, Arad M, Barak S, De Levie A, Boulay D, Pichat P, Griebel G, Weiner I (2009) Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl) 202:385–396

    Article  CAS  Google Scholar 

  • Bonuccelli U, Del Dotto P (2006) New pharmacologic horizons in the treatment of Parkinson disease. Neurology 67:S30–S38

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Pichat P, Dargazanli G, Estennebouhtou G, Terranova J, Rogacki N, Stemmelin J, Coste A, Lanneau C, Desvignes C (2008) Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav 91:47–58

    Article  PubMed  CAS  Google Scholar 

  • Bridges TM, Williams R, Lindsley CW (2008) Design of potent GlyT1 inhibitors: in vitro and in vivo profiles. Curr Opin Mol Ther 10:591–601

    PubMed  CAS  Google Scholar 

  • Brown A, Carlyle I, Clark J, Hamilton W, Gibson S, McGarry G, McEachen S, Rae D, Thorn S, Walker G (2001) Discovery and SAR of org 24598-a selective glycine uptake inhibitor. Bioorg Med Chem Lett 11:2007–2009

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RW, Freedman R, Javitt DC, Abi-Dargham A, Lieberman JA (2007a) Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull 33:1120–1130

    Article  PubMed  Google Scholar 

  • Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT (2007b) The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry 164:1593–1602

    Article  PubMed  Google Scholar 

  • Burnet P, Hutchinson L, Vonhesling M, Gilbert E, Brandon N, Rutter A, Hutson P, Harrison P (2008) Expression of D-serine and glycine transporters in the prefrontal cortex and cerebellum in schizophrenia. Schizophr Res 102:283–294

    Article  PubMed  CAS  Google Scholar 

  • Butler PD, Zemon V, Schechter I, Saperstein AM, Hoptman MJ, Lim KO, Revheim N, Silipo G, Javitt DC (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62:495–504

    Article  PubMed  Google Scholar 

  • Butler PD, Silverstein SM, Dakin SC (2008) Visual perception and its impairment in schizophrenia. Biol Psychiatry 64:40–47

    Article  PubMed  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798

    Article  PubMed  CAS  Google Scholar 

  • Chen GM, Weston JK (1960) The analgesic and anesthetic effects of 1-(1-phenylcyclohexyl)-piperidine HCl in the monkey. Anesth Analg 39:132–137

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Muhlhauser M, Yang CR (2003) Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 89:691–703

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Palafox GP, Nakayama K, Levy DL, Matthysse S, Holzman PS (1999) Motion perception in schizophrenia. Arch Gen Psychiatry 56:149–154

    Article  PubMed  CAS  Google Scholar 

  • Contreras PC (1990) D-serine antagonized phencyclidine- and MK-801-induced stereotyped behavior and ataxia. Neuropharmacology 29:291–293

    Article  PubMed  CAS  Google Scholar 

  • Corvin A, McGhee KA, Murphy K, Donohoe G, Nangle JM, Schwaiger S, Kenny N, Clarke S, Meagher D, Quinn J, Scully P, Baldwin P, Browne D, Walsh C, Waddington JL, Morris DW, Gill M (2007) Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 144B:949–953

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Substance use disorders and Schizophrenia: a question of shared glutamatergic mechanisms. Neurotox Res 10:221–233

    Article  PubMed  CAS  Google Scholar 

  • de Bruin NM, Ellenbroek BA, Cools AR, Coenen AM, van Luijtelaar EL (1999) Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology (Berl) 142:9–17

    Article  Google Scholar 

  • Dean O, Giorlando F, Berk M (2011) N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 36:78–86

    PubMed  Google Scholar 

  • Deng X, Sagata N, Takeuchi N, Tanaka M, Ninomiya H, Iwata N, Ozaki N, Shibata H, Fukumaki Y (2008) Association study of polymorphisms in the neutral amino acid transporter genes SLC1A4, SLC1A5 and the glycine transporter genes SLC6A5, SLC6A9 with schizophrenia. BMC Psychiatry 8:58

    Article  PubMed  CAS  Google Scholar 

  • Depoortere R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vige X, Biton B, Steinberg R, Francon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrie P, Scatton B (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985

    Article  PubMed  CAS  Google Scholar 

  • Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–3728

    Article  PubMed  CAS  Google Scholar 

  • Domino EF, Chodoff P, Corssen G (1965) Pharmacological effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 6:279–291

    PubMed  CAS  Google Scholar 

  • Domino EF, Luby E (1981) Abnormal mental states induced by phencyclidine as a model of schizophrenia. In: Domino EF (ed) PCP (phencyclidine): historical and current perspectives. NPP Books, Ann Arbor, MI, pp 401–418

    Google Scholar 

  • Duffy S, Labrie V, Roder JC (2008) D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 33:1004–1018

    Article  PubMed  CAS  Google Scholar 

  • Ehrlichman RS, Maxwell CR, Majumdar S, Siegel SJ (2008) Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice. J Cogn Neurosci 20:1403–1414

    Article  PubMed  Google Scholar 

  • Farrant M, Feldmeyer D, Takahashi T, Cull-Candy SG (1994) NMDA-receptor channel diversity in the developing cerebellum. Nature 368:335–339

    Article  PubMed  CAS  Google Scholar 

  • Felipe A, Vinas O, Remesar X (1990) Changes in glycine and leucine transport during red cell maturation in the rat. Biosci Rep 10:209–216

    Article  PubMed  CAS  Google Scholar 

  • Fox K, Sato H, Daw N (1990) The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. J Neurophysiol 64:1413–1428

    PubMed  CAS  Google Scholar 

  • Gelfin E, Kaufman Y, Korn-Lubetzki I, Bloch B, Kremer I, Javitt DC, Heresco-Levy U (2012) D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson’s disease. Int J Neuropsychopharmacol 15(4):543–549

    PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Goldberg TE, Straub RE, Callicott JH, Hariri A, Mattay VS, Bigelow L, Coppola R, Egan MF, Weinberger DR (2006) The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31:2022–2032

    Article  PubMed  CAS  Google Scholar 

  • Gravina P, Spoletini I, Masini S, Valentini A, Vanni D, Paladini E, Bossu P, Caltagirone C, Federici G, Spalletta G, Bernardibni S (2011) Gebnetic polymorphisms of glutathione S-transferases GSTM1, GSTT1, GSTP1 and GSTA1 as risk factors for schizophrenia. Psychiatry Res 187(3):454–456

    Article  PubMed  CAS  Google Scholar 

  • Greenberg WM, Benedict MM, Doerfer J, Perrin M, Panek L, Cleveland WL, Javitt DC (2009) Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults. J Psychiatr Res 43:664–670

    Article  PubMed  Google Scholar 

  • Gunduz-Bruce H, Reinhart RM, Roach BJ, Gueorguieva R, Oliver S, D’Souza DC, Ford JM, Krystal JH, Mathalon DH (2012) Glutamatergic modulation of auditory information processing in the human brain. Biol Psychiatry 71(11):969–977

    Article  PubMed  CAS  Google Scholar 

  • Hamill TG, Eng W, Jennings A, Lewis R, Thomas S, Wood S, Street L, Wisnoski D, Wolkenberg S, Lindsley C, Sanabria-Bohorquez SM, Patel S, Riffel K, Ryan C, Cook J, Sur C, Burns HD, Hargreaves R (2011) The synthesis and preclinical evaluation in rhesus monkey of [(1)F]MK-6577 and [(1)(1)C]CMPyPB glycine transporter 1 positron emission tomography radiotracers. Synapse 65:261–270

    Article  PubMed  CAS  Google Scholar 

  • Harsing LG Jr, Solyom S, Salamon C (2001) The role of glycineB binding site and glycine transporter (GlyT1) in the regulation of [3H]GABA and [3H]glycine release in the rat brain. Neurochem Res 26:915–923

    Article  PubMed  CAS  Google Scholar 

  • Harsing LG Jr, Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C, Tesolin-Decros B, Matyus P, Egyed A, Spedding M, Levay G (2003) The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 74:811–825

    Article  PubMed  CAS  Google Scholar 

  • Hartvig P, Valtysson J, Lindner KJ, Kristensen J, Karlsten R, Gustafsson LL, Persson J, Svensson JO, Oye I, Antoni G et al (1995) Central nervous system effects of subdissociative doses of (S)-ketamine are related to plasma and brain concentrations measured with positron emission tomography in healthy volunteers. Clin Pharmacol Ther 58:165–173

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Fujita Y, Ishima T, Chaki S, Iyo M (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and D-serine. Eur Neuropsychopharmacol 18:414–421

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2011) Glycine transporter-1: a new potential therapeutic target for schizophrenia. Curr Pharm Des 17:112–120

    Article  PubMed  CAS  Google Scholar 

  • Heekeren K, Daumann J, Neukirch A, Stock C, Kawohl W, Norra C, Waberski TD, Gouzoulis-Mayfrank E (2008) Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology (Berl) 199:77–88

    Article  CAS  Google Scholar 

  • Heggelund P, Hartveit E (1990) Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. I. Lagged cells. J Neurophysiol 63:1347–1360

    PubMed  CAS  Google Scholar 

  • Herdon HJ, Roberts JC, Coulton S, Porter RA (2010) Pharmacological characterisation of the GlyT-1 glycine transporter using two novel radioligands. Neuropharmacology 59:558–565

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56:29–36

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M (2005) D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585

    Article  PubMed  CAS  Google Scholar 

  • Hetem LA, Danion JM, Diemunsch P, Brandt C (2000) Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology (Berl) 152:283–288

    Article  CAS  Google Scholar 

  • Honey RA, Turner DC, Honey GD, Sharar SR, Kumaran D, Pomarol-Clotet E, McKenna P, Sahakian BJ, Robbins TW, Fletcher PC (2003) Subdissociative dose ketamine produces a deficit in manipulation but not maintenance of the contents of working memory. Neuropsychopharmacology 28:2037–2044

    Article  PubMed  CAS  Google Scholar 

  • Imamura Y, Ma CL, Pabba M, Bergeron R (2008) Sustained saturating level of glycine induces changes in NR2B-containing-NMDA receptor localization in the CA1 region of the hippocampus. J Neurochem 105:2454–2465

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1989) Biexponential kinetics of [3H]MK-801 binding: evidence for access to closed and open N-methyl-D-aspartate receptor channels. Mol Pharmacol 35:387–393

    PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Frusciante MJ, Zukin SR (1994a) Activation-related and activation-independent effects of polyamines on phencyclidine receptor binding within the N-methyl-D-aspartate receptor complex. J Pharmacol Exp Ther 270:604–613

    PubMed  CAS  Google Scholar 

  • Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP (1994b) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151:1234–1236

    PubMed  CAS  Google Scholar 

  • Javitt DC, Doneshka P, Grochowski S, Ritter W (1995) Impaired mismatch negativity generation reflects widespread dysfunction of working memory in schizophrenia. Arch Gen Psychiatry 52:550–558

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci USA 93:11962–11967

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Frusciante M (1997) Glycyldodecylamide, a phencyclidine behavioral antagonist, blocks cortical glycine uptake: implications for schizophrenia and substance abuse. Psychopharmacology (Berl) 129:96–98

    Article  CAS  Google Scholar 

  • Javitt DC, Sershen H, Hashim A, Lajtha A (1997) Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology 17:202–204

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Balla A, Sershen H, Lajtha A (1999a) A.E. Bennett Research Award. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 45:668–679

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Rabinowicz E, Silipo G, Shelley AM (1999b) Electrophysiological dissection of working memory dysfunction in schizophrenia. Schizophr Res 36:254–255

    Google Scholar 

  • Javitt DC (2000) Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia. Audiol Neurootol 5:207–215

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H (2004) Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-D-aspartate receptor/glycine-site agonists. Neuropsychopharmacology 29:300–307

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Duncan L, Balla A, Sershen H (2005a) Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 10:275–287

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Hashim A, Sershen H (2005b) Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology 30:649–656

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC (2006) Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr Opin Psychiatry 19:151–157

    Article  PubMed  Google Scholar 

  • Javitt DC, Schoepp D, Kalivas PW, Volkow ND, Zarate C, Merchant K, Bear MF, Umbricht D, Hajos M, Potter WZ, Lee CM (2011) Translating glutamate: from pathophysiology to treatment. Sci Transl Med 3:102mr2

    Article  PubMed  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  • Kalbaugh TL, Zhang J, Diamond JS (2009) Coagonist release modulates NMDA receptor subtype contributions at synaptic inputs to retinal ganglion cells. J Neurosci 29:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Kantrowitz JT, Ziwich RT, Cornblatt BA, Malhotra AK, Silipo G, Woods SW, Javitt DC (2008) The safety and effectiveness of high dose D-serine in the treatment of schizophrenia. Biol Psychiatry 63:286S

    Article  CAS  Google Scholar 

  • Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, D’Souza C, Saksa J, Woods SW, Javitt DC (2010) High dose D-serine in the treatment of schizophrenia. Schizophr Res 121:125–130

    Article  PubMed  Google Scholar 

  • Karasawa J, Hashimoto K, Chaki S (2008) D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav Brain Res 186:78–83

    Article  PubMed  CAS  Google Scholar 

  • Kieffaber PD, Kappenman ES, Bodkins M, Shekhar A, O’Donnell BF, Hetrick WP (2006) Switch and maintenance of task set in schizophrenia. Schizophr Res 84:345–358

    Article  PubMed  Google Scholar 

  • Kim J, Doop ML, Blake R, Park S (2005) Impaired visual recognition of biological motion in schizophrenia. Schizophr Res 77:299–307

    Article  PubMed  Google Scholar 

  • Kreitschmann-Andermahr I, Rosburg T, Demme U, Gaser E, Nowak H, Sauer H (2001) Effect of ketamine on the neuromagnetic mismatch field in healthy humans. Brain Res Cogn Brain Res 12:109–116

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Bennett A, D’Souza DC, Abi-Dargham A, Morrissey K, Abi-Saab D, Bremner JD, Bowers MB Jr, Suckow RF, Stetson P, Heninger GR, Charney DS (1998) Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology (Berl) 135:213–229

    Article  CAS  Google Scholar 

  • Krystal JH, D’Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, Cassello K, Bowers MB Jr, Vegso S, Heninger GR, Charney DS (1999) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology (Berl) 145:193–204

    Article  CAS  Google Scholar 

  • Krystal JH, Bennett A, Abi-Saab D, Belger A, Karper LP, D’Souza DC, Lipschitz D, Abi-Dargham A, Charney DS (2000) Dissociation of ketamine effects on rule acquisition and rule implementation: possible relevance to NMDA receptor contributions to executive cognitive functions. Biol Psychiatry 47:137–143

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Perry EB Jr, Gueorguieva R, Belger A, Madonick SH, Abi-Dargham A, Cooper TB, Macdougall L, Abi-Saab W, D’Souza DC (2005) Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry 62:985–994

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Petrakis IL, Limoncelli D, Nappi SK, Trevisan L, Pittman B, D’Souza DC, Suckow RF (2011) Characterization of the interactive effects of glycine and D-cycloserine in men: further evidence for enhanced NMDA receptor function associated with human alcohol dependence. Neuropsychopharmacology 36:701–710

    Article  PubMed  CAS  Google Scholar 

  • Kwon YH, Esguerra M, Sur M (1991) NMDA and non-NMDA receptors mediate visual responses of neurons in the cat’s lateral geniculate nucleus. J Neurophysiol 66:414–428

    PubMed  CAS  Google Scholar 

  • Labrie V, Duffy S, Wang W, Barger SW, Baker GB, Roder JC (2009a) Genetic inactivation of D-amino acid oxidase enhances extinction and reversal learning in mice. Learn Mem 16:28–37

    Article  PubMed  CAS  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AH, Roder JC (2009b) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  PubMed  CAS  Google Scholar 

  • Lane HY, Chang YC, Liu YC, Chiu CC, Tsai GE (2005) Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry 62:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, Chen PW, Tsai G (2006) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 60:645–649

    Article  PubMed  CAS  Google Scholar 

  • Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, Tsai GE (2008) Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry 63:9–12

    Article  PubMed  CAS  Google Scholar 

  • Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, Bovet P, Bush AI, Conus P, Copolov D, Fornari E, Meuli R, Solida A, Vianin P, Cuenod M, Buclin T, Do KQ (2008) Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 33:2187–2199

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G (2003) Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal–lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol Psychiatry 54:1162–1170

    Article  PubMed  CAS  Google Scholar 

  • Li D, He L (2007) G72/G30 genes and schizophrenia: a systematic meta-analysis of association studies. Genetics 175:917–922

    Article  PubMed  CAS  Google Scholar 

  • Lido HH, Stomberg R, Fagerberg A, Ericson M, Soderpalm B (2009) The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens. Alcohol Clin Exp Res 33:1151–1157

    Article  PubMed  CAS  Google Scholar 

  • Lindsley CW, Shipe WD, Wolkenberg SE, Theberge CR, Williams DL Jr, Sur C, Kinney GG (2006) Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr Top Med Chem 6:771–785

    Article  PubMed  CAS  Google Scholar 

  • Linn GS, O’Keeffe RT, Schroeder CE, Lifshitz K, Javitt DC (1999) Behavioral effects of chronic phencyclidine in monkeys. Neuroreport 10:2789–2793

    Article  PubMed  CAS  Google Scholar 

  • Linn GS, Negi SS, Gerum SV, Javitt DC (2003) Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology (Berl) 169:234–239

    Article  CAS  Google Scholar 

  • Lipina T, Labrie V, Weiner I, Roder J (2005) Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl) 179:54–67

    Article  CAS  Google Scholar 

  • Lowe JA 3rd, Deninno SL, Drozda SE, Schmidt CJ, Ward KM, David Tingley F 3rd, Sanner M, Tunucci D, Valentine J (2010) An octahydro-cyclopenta[c]pyrrole series of inhibitors of the type 1 glycine transporter. Bioorg Med Chem Lett 20:907–911

    Article  PubMed  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum F, Gottlieb J, Kelley R (1959) Study of a new schizophrenomimetic drug, sernyl. AMA Arch Neurol Psychiatry 81:363–369

    Article  PubMed  CAS  Google Scholar 

  • Lynch DR, Guttmann RP (2001) NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets 2:215–231

    Article  PubMed  CAS  Google Scholar 

  • Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R (2008) Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101:76–83

    Article  PubMed  Google Scholar 

  • Madry C, Betz H, Geiger JR, Laube B (2008) Supralinear potentiation of NR1/NR3A excitatory glycine receptors by Zn2+ and NR1 antagonist. Proc Natl Acad Sci USA 105:12563–12568

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Manahan-Vaughan D, Wildforster V, Thomsen C (2008) Rescue of hippocampal LTP and learning deficits in a rat model of psychosis by inhibition of glycine transporter-1 (GlyT1). Eur J Neurosci 28:1342–1350

    Article  PubMed  Google Scholar 

  • Marc RE (1999) Mapping glutamatergic drive in the vertebrate retina with a channel- permeant organic cation. J Comp Neurol 407:47–64

    Article  PubMed  CAS  Google Scholar 

  • Martina M (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500

    Article  PubMed  CAS  Google Scholar 

  • Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500

    Article  PubMed  CAS  Google Scholar 

  • McBain CJ, Kleckner NW, Wyrick S, Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 36:556–565

    PubMed  CAS  Google Scholar 

  • Mexal S, Frank M, Berger R, Adams CE, Ross RG, Freedman R, Leonard S (2005) Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers. Brain Res Mol Brain Res 139:317–332

    Article  PubMed  CAS  Google Scholar 

  • Mezler M, Hornberger W, Mueller R, Schmidt M, Amberg W, Braje W, Ochse M, Schoemaker H, Behl B (2008) Inhibitors of GlyT1 affect glycine transport via discrete binding sites. Mol Pharmacol 74:1705–1715

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100:433–442

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1):4–15

    Article  PubMed  CAS  Google Scholar 

  • Molander A, Lido HH, Lof E, Ericson M, Soderpalm B (2007) The glycine reuptake inhibitor Org 25935 decreases ethanol intake and preference in male wistar rats. Alcohol Alcohol 42:11–18

    PubMed  CAS  Google Scholar 

  • Morgan CJA, Mofeez A, Brandner B, Bromley L, Curran HV (2003) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology 29:208–218

    Article  CAS  Google Scholar 

  • Morgenstern FS, Beech HR, Davies RM (1962) An investigation of drug-induced sensory disturbances. Psychopharmacologia 3:193–201

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y, Otani K, Kishimoto M, Morio A, Kotaka T, Okahisa Y, Matsushita M, Morikawa A, Hamase K, Zaitsu K, Kuroda S (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y, Kishimoto M, Okahisa Y, Kotaka T, Harano M, Inada T, Komiyama T, Hori T, Yamada M, Sekine Y, Iwata N, Iyo M, Sora I, Ozaki N, Kuroda S (2008) The glycine transporter 1 gene (GLYT1) is associated with methamphetamine-use disorder. Am J Med Genet B Neuropsychiatr Genet 147B:54–58

    Article  PubMed  CAS  Google Scholar 

  • Nagy K, Marko B, Zsilla G, Matyus P, Pallagi K, Szabo G, Juranyi Z, Barkoczy J, Levay G, Harsing LG Jr (2010) Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone. Neurochem Res 35:2096–2106

    Article  PubMed  CAS  Google Scholar 

  • Neeman G, Blanaru M, Bloch B, Kremer I, Ermilov M, Javitt DC, Heresco-Levy U (2005) Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. Am J Psychiatry 162:1738–1740

    Article  PubMed  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa H, Inoue T, Izumi T, Nakagawa S, Koyama T (2010) SSR504734, a glycine transporter-1 inhibitor, attenuates acquisition and expression of contextual conditioned fear in rats. Behav Pharmacol 21:576–579

    Article  PubMed  CAS  Google Scholar 

  • Oranje B, van Berckel BN, Kemner C, van Ree JM, Kahn RS, Verbaten MN (2000) The effects of a sub-anaesthetic dose of ketamine on human selective attention. Neuropsychopharmacology 22:293–302

    Article  PubMed  CAS  Google Scholar 

  • Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213

    PubMed  CAS  Google Scholar 

  • Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158(1):126–136

    Article  PubMed  CAS  Google Scholar 

  • Papp A, Juranyi Z, Nagymajtenyi L, Matyus P, Harsing LG Jr (2008) The synaptic and nonsynaptic glycine transporter type-1 inhibitors Org-24461 and NFPS alter single neuron firing rate in the rat dorsal raphe nucleus. Further evidence for a glutamatergic-serotonergic interaction and its role in antipsychotic action. Neurochem Int 52:130–134

    Article  PubMed  CAS  Google Scholar 

  • Parwani A, Weiler MA, Blaxton TA, Warfel D, Hardin M, Frey K, Lahti AC (2005) The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers. Psychopharmacology (Berl) 183:265–274

    Article  CAS  Google Scholar 

  • Passie T, Karst M, Wiese B, Emrich HM, Schneider U (2005) Effects of different subanesthetic doses of (S)-ketamine on neuropsychology, psychopathology, and state of consciousness in man. Neuropsychobiology 51:226–233

    Article  PubMed  CAS  Google Scholar 

  • Perry K, Falcone J, Fell M, Ryder J, Yu H, Love P, Katner J, Gordon K, Wade M, Man T (2008a) Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas. Neuropharmacology 55:743–754

    Article  PubMed  CAS  Google Scholar 

  • Perry KW, Falcone JF, Fell MJ, Ryder JW, Yu H, Love PL, Katner J, Gordon KD, Wade MR, Man T, Nomikos GG, Phebus LA, Cauvin AJ, Johnson KW, Jones CK, Hoffmann BJ, Sandusky GE, Walter MW, Porter WJ, Yang L, Merchant KM, Shannon HE, Svensson KA (2008b) Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas. Neuropharmacology 55:743–754

    Article  PubMed  CAS  Google Scholar 

  • Philpot BD, Cho KK, Bear MF (2007) Obligatory role of NR2A for metaplasticity in visual cortex. Neuron 53:495–502

    Article  PubMed  CAS  Google Scholar 

  • Pinard E, Alanine A, Alberati D, Bender M, Borroni E, Bourdeaux P, Brom V, Burner S, Fischer H, Hainzl D, Halm R, Hauser N, Jolidon S, Lengyel J, Marty HP, Meyer T, Moreau JL, Mory R, Narquizian R, Nettekoven M, Norcross RD, Puellmann B, Schmid P, Schmitt S, Stalder H, Wermuth R, Wettstein JG, Zimmerli D (2010a) Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfon yl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. J Med Chem 53:4603–4614

    Article  PubMed  CAS  Google Scholar 

  • Pinard E, Alberati D, Bender M, Borroni E, Brom V, Burner S, Fischer H, Hainzl D, Halm R, Hauser N, Jolidon S, Lengyel J, Marty HP, Meyer T, Moreau JL, Mory R, Narquizian R, Norcross RD, Schmid P, Wermuth R, Zimmerli D (2010b) Discovery of benzoylisoindolines as a novel class of potent, selective and orally active GlyT1 inhibitors. Bioorg Med Chem Lett 20:6960–6965

    Article  PubMed  CAS  Google Scholar 

  • Pollard H, Khrestchatisky M, Moreau J, Ben Ari Y (1993) Transient expression of the NR2C subunit of the NMDA receptor in developing rat brain. Neuroreport 4:411–414

    Article  PubMed  CAS  Google Scholar 

  • Pow DV (1998) Transport is the primary determinant of glycine content in retinal neurons. J Neurochem 70:2628–2636

    Article  PubMed  CAS  Google Scholar 

  • Radant AD, Bowdle TA, Cowley DS, Kharasch ED, Roy-Byrne PP (1998) Does ketamine-mediated N-methyl-D-aspartate receptor antagonism cause schizophrenia-like oculomotor abnormalities? Neuropsychopharmacology 19:434–444

    Article  PubMed  CAS  Google Scholar 

  • Ritzler BA (1977) Proprioception and schizophrenia: a replication study with nonschizophrenic patient controls. J Abnorm Psychol 86:501–509

    Article  PubMed  CAS  Google Scholar 

  • Rivadulla C, Sharma J, Sur M (2001) Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex. J Neurosci 21:1710–1719

    PubMed  CAS  Google Scholar 

  • Roberts BM, Shaffer CL, Seymour PA, Schmidt CJ, Williams GV, Castner SA (2010) Glycine transporter inhibition reverses ketamine-induced working memory deficits. Neuroreport 21:390–394

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum G, Cohen BD, Luby ED, Gottlieb JS, Yelen D (1959) Comparison of sernyl with other drugs. Arch Gen Psychiatry 1:651–656

    Article  CAS  Google Scholar 

  • Rowland LM, Astur RS, Jung RE, Bustillo JR, Lauriello J, Yeo RA (2005) Selective cognitive impairments associated with NMDA receptor blockade in humans. Neuropsychopharmacology 30:633–639

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Bachmann R, Kometer M, Csomor PA, Stephan KE, Seifritz E, Vollenweider FX (2011) Mismatch negativity encoding of prediction errors predicts S-ketamine-induced cognitive impairments. Neuropsychopharmacology 37:865–875. doi:10.1038/npp.2011.261

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219

    Article  PubMed  CAS  Google Scholar 

  • Shelley AM, Ward PB, Catts SV, Michie PT, Andrews S, McConaghy N (1991) Mismatch negativity: an index of a preattentive processing deficit in schizophrenia. Biol Psychiatry 30:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki T, Kaku A, Chaki S (2010) D-Serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacology (Berl) 209:263–270

    Article  CAS  Google Scholar 

  • Shinkai T, De Luca V, Hwang R, Muller DJ, Lanktree M, Zai G, Shaikh S, Wong G, Sicard T, Potapova N, Trakalo J, King N, Matsumoto C, Hori H, Wong AH, Ohmori O, Macciardi F, Nakamura J, Kennedy JL (2007) Association analyses of the DAOA/G30 and D-amino-acid oxidase genes in schizophrenia: further evidence for a role in schizophrenia. Neuromolecular Med 9:169–177

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Boison D, Mohler H, Feldon J, Yee BK (2009a) Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability? Behav Neurosci 123:1012–1027

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Feldon J, Yee BK (2009b) The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice. Psychopharmacology (Berl) 202:371–384

    Article  CAS  Google Scholar 

  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    Article  PubMed  CAS  Google Scholar 

  • Stoet G, Snyder LH (2006) Effects of the NMDA antagonist ketamine on task-switching performance: evidence for specific impairments of executive control. Neuropsychopharmacology 31:1675–1681

    Article  PubMed  CAS  Google Scholar 

  • Struys EA, Heijboer AC, van Moorselaar J, Jakobs C, Blankenstein MA (2010) Serum sarcosine is not a marker for prostate cancer. Ann Clin Biochem 47:282–282

    Article  PubMed  Google Scholar 

  • Sucher NJ, Lipton SA (1991) Redox modulatory site of the NMDA receptor-channel complex: regulation by oxidized glutathione. J Neurosci Res 30:582–591

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Anil AE, Jin D, Jayathilake K, Lee M, Meltzer HY (2004) Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int J Neuropsychopharmacol 7:1–8

    Article  PubMed  CAS  Google Scholar 

  • Supplisson S, Bergman C (1997) Control of NMDA receptor activation by a glycine transporter co- expressed in Xenopus oocytes. J Neurosci 17:4580–4590

    PubMed  CAS  Google Scholar 

  • Sur C, Kinney GG (2007) Glycine transporter 1 inhibitors and modulation of NMDA receptor-mediated excitatory neurotransmission. Curr Drug Targets 8:643–649

    Article  PubMed  CAS  Google Scholar 

  • Terui Y, Chu YW, Li JY, Ando T, Fukunaga T, Aoki T, Toda Y (2008) New cyclic tetrapeptides from Nonomuraea sp. TA-0426 that inhibit glycine transporter type 1 (GlyT1). Bioorg Med Chem Lett 18:6321–6323

    Article  PubMed  CAS  Google Scholar 

  • Tikhonravov D, Neuvonen T, Pertovaara A, Savioja K, Ruusuvirta T, Naatanen R, Carlson S (2008) Effects of an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats. Brain Res 1203:97–102

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Lajtha A (1981) Elevation of cerebral levels of nonessential amino acids in vivo by administration of large doses. Neurochem Res 6:1309–1317

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Lajtha A (1986) Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 11:393–400

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Weiss B, Banay-Schwartz M, Lajtha A (1986) Effect of glycine derivatives on behavioral changes induced by 3-mercaptopropionic acid or phencyclidine in mice. Res Comm Psychol Psychiat Behav 11:1–9

    CAS  Google Scholar 

  • Toth E, Sershen H, Hashim A, Vizi ES, Lajtha A (1992) Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: role of glutamic acid. Neurochem Res 17:265–271

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Ralph-Williams RJ, Martina M, Bergeron R, Berger-Sweeney J, Dunham KS, Jiang Z, Caine SB, Coyle JT (2004) Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci USA 101:8485–8490

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76:1–23

    Article  PubMed  Google Scholar 

  • Umbricht D, Yoo K, Youssef E, Dorflinger E, Martin-Facklam M, Bausch A, Arrowsmith R, Alberati D, Marder SR, Santarelli L (2010) Glycine transporter type 1 (GLYT1) inhibitor RG1678: positive results of the proof-of-concept study for the treatment of negative symptoms in schizophrenia. Neuropsychopharmacology 35:s320–s321

    Google Scholar 

  • Varnes JG, Forst JM, Hoerter TN, Holmquist CR, Wilkins DE, Tian G, Jonak G, Wang X, Potts WM, Wood MW, Alhambra C, Brugel TA, Albert JS (2010) Identification of N-(2-(azepan-1-yl)-2-phenylethyl)-benzenesulfonamides as novel inhibitors of GlyT1. Bioorg Med Chem Lett 20:4878–4881

    Article  PubMed  CAS  Google Scholar 

  • Waziri R (1988) Glycine therapy of schizophrenia. Biol Psychiatry 23:210–211

    Article  PubMed  CAS  Google Scholar 

  • Weigensberg AM, Blostein R (1985) Na+-coupled glycine transport in reticulocyte vesicles of distinct sidedness: stoichiometry and symmetry. J Membr Biol 86:37–44

    Article  PubMed  CAS  Google Scholar 

  • Weiser M, Heresco-Levy U, Davidson M, Javitt DC, Werbeloff N, Gershon AA, Abramovich Y, Amital D, Doron A, Konas S, Levkovitz Y, Liba D, Teitelbaum A and Y Zimmerman. A multicenter, add-on RCT of D-serine for negative and cognitive symptoms of schizophrenia. J Clin Psychopharmacol (in press)

    Google Scholar 

  • Wolkenberg SE, Zhao Z, Wisnoski DD, Leister WH, O’Brien J, Lemaire W, Williams DL Jr, Jacobson MA, Sur C, Kinney GG, Pettibone DJ, Tiller PR, Smith S, Gibson C, Ma BK, Polsky-Fisher SL, Lindsley CW, Hartman GD (2009) Discovery of GlyT1 inhibitors with improved pharmacokinetic properties. Bioorg Med Chem Lett 19:1492–1495

    Article  PubMed  CAS  Google Scholar 

  • Wolkenberg SE, Sur C (2010) Recent progress in the discovery of non-sarcosine based GlyT1 inhibitors. Curr Top Med Chem 10:170–186

    Article  PubMed  CAS  Google Scholar 

  • Wood PL (1995) The co-agonist concept: is the NMDA-associated glycine receptor saturated in vivo? Life Sci 57:301–310

    Article  PubMed  CAS  Google Scholar 

  • Woods SW, Thomas L, Tully E, Hawkins KA, Miller TJ, Rosen JL, Pearlson G, McGlashan TH (2004) Effects of oral glycine in the schizophrenia prodrome. Schiz Res 70:79

    Google Scholar 

  • Wu PL, Tang HS, Lane HY, Tsai CA, Tsai GE (2011) Sarcosine therapy for obsessive compulsive disorder: a prospective, open-label study. J Clin Psychopharmacol 31:369–374

    Article  PubMed  CAS  Google Scholar 

  • Wylie GR, Clark EA, Butler PD, Javitt DC (2010) Schizophrenia patients show task switching deficits consistent with N-methyl-d-aspartate system dysfunction but not global executive deficits: implications for pathophysiology of executive dysfunction in schizophrenia. Schizophr Bull 36:585–594

    Article  PubMed  Google Scholar 

  • Yang C, Svensson K (2008) Allosteric modulation of NMDA receptor via elevation of brain glycine and d-serine: the therapeutic potentials for schizophrenia. Pharmacol Ther 120:317–332

    Article  PubMed  CAS  Google Scholar 

  • Yao JK, Leonard S, Reddy R (2006) Altered glutathione redox state in schizophrenia. Dis Markers 22:83–93

    PubMed  CAS  Google Scholar 

  • Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, Knuesel I, Benke D, Feldon J, Mohler H, Boison D (2006) Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci 26:3169–3181

    Article  PubMed  CAS  Google Scholar 

  • Zafra F, Gimenez C (2008) Glycine transporters and synaptic function. IUBMB Life 60:810–817

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z, Obrien J, Lemaire W, Omalley S, Miller P, Zhao Z, Wallace M, Raab C, Lindsley C, Sur C (2008) A novel radioligand for glycine transporter 1: characterization and use in autoradiographic and in vivo brain occupancy studies. Nucl Med Biol 35:315–325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support: This work was supported in part by NIH grants R37 MH049334, P50 MH086385, R01 DA03383 and U01 MH074356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Javitt M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javitt, D.C. (2012). Glycine Transport Inhibitors in the Treatment of Schizophrenia. In: Geyer, M., Gross, G. (eds) Novel Antischizophrenia Treatments. Handbook of Experimental Pharmacology, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25758-2_12

Download citation

Publish with us

Policies and ethics