Skip to main content

Design of a Multimodal VR Platform for the Training of Surgery Skills

  • Conference paper
Haptics: Generating and Perceiving Tangible Sensations (EuroHaptics 2010)

Abstract

There are many ways by which we can learn new skills. For sensory motor skills, repeated practice (often under supervision and guidance of an expert mentor) is required in order to progressively understand the consequences of our actions, adapt our behavior and develop optimal perception-action loops needed to intuitively and efficiently perform the task. VR multimodal platforms, if adequately designed, can offer an alternative to real environments therefore. Indeed they present interesting features: controlled environment, measure of the user’s performance, display of quantitative feedback. This paper presents such a platform that was developed for surgery skills training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kneebone, R.: Simulation in surgical training: educational issues and practical implications. Med. Educ. 37, 267–277 (2003)

    Article  Google Scholar 

  2. Baca, A., Kornfeind, P.: Rapid Feedback Systems for Elite Sports Training. Pervasive Computing 5(4), 70–76 (2006)

    Article  Google Scholar 

  3. Palluel-Germain, R., Bara, F., de Boisferon, A.H., Hennion, B., Gouagout, P., Gentaz, E.: A Visuo-Haptic Device – Telemaque – Increases Kindergarten Children’s Handwriting Acquisition. In: Proc. Worldhaptics Conf., Tsukuba, Japan, pp. 72–77 (2007)

    Google Scholar 

  4. Sourin, A., Sourina, O., Howe, T.S.: Virtual Orthopedic Surgery Training. Computer Graphics and Applications 20(3), 6–9 (2000)

    Article  Google Scholar 

  5. Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A.: Real-time Haptic and Visual Simulation of Bone Dissection. In: Proc. IEEE Virtual Reality, Orlando, Florida, pp. 209–216 (2002)

    Google Scholar 

  6. Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Belvins, N.H., Girod, S.: Visuohaptic Simulation of Bone Surgery for Training and Evaluation. Computer Graphics and Applications 26(6), 48–57 (2006)

    Article  Google Scholar 

  7. Terada, T., Ogata, M., Kukikawa, T., Hongo, S., Nagasaka, M., Takanami, K., Kajihara, K., Fujino, M.: Virtual Human Body using Haptic Devices for Endoscopic Surgery Training Simulator. In: Proc. 4th IEEE Int. Conf. on Mechatronics, Kumamoto, Japan, pp. 1–5 (2007)

    Google Scholar 

  8. Reznick, R.K., MacRae, H.: Teaching surgical skills, changes in the wind. The New England Journal of Medicine 355(25), 2664–2669 (2006)

    Article  Google Scholar 

  9. Haque, S., Srinivasan, S.: A Meta-Analysis of the Training Effectiveness of Virtual Reality Surgical Simulators. IEEE Transactions on Information Technology in Biomedicine 10(1), 51–58 (2006)

    Article  Google Scholar 

  10. Larsen, C.R., Soerensen, J.L., Grantcharov, T.P., Dalsgaard, T., Schouenborg, L., Ottosen, C., Schroeder, T.V., Ottesen, B.S.: Effect of virtual reality training on laparoscopic surgery: randomized controlled trial. BMJ 338, b1802 (2009)

    Article  Google Scholar 

  11. Müller-Tomfelde, C.: Interaction sound feedback in a haptic virtual environment to improve motor skill acquisition. In: Proc. Int. Conf. on Auditory Display, Sydney, Australia (2004)

    Google Scholar 

  12. Gosselin, F.: Développement d’outils d’aide à la conception d’organes de commande pour la téléopération à retour d’effort. PhD dissertation, University of Poitiers, 358 p. (2000)

    Google Scholar 

  13. Gosselin, F., Bidard, C., Brisset, J.: Design of a high fidelity haptic device for telesurgery. In: Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, pp. 206–211 (2005)

    Google Scholar 

  14. Hoffmann, P., Gosselin, F., Taha, F., Bouchigny, S., Hammershøi, D.: Analysis of the drilling sound in maxillo facial surgery. In: Proc. Int. Conf. on Multimodal Interfaces for Skills Transfer, Bilbao, Spain, pp. 121–127 (2009)

    Google Scholar 

  15. Sewell, C., Blevins, N.H., Peddamatham, S., Tan, H.Z., Morris, D., Salisbury, K.: The Effect of Virtual Haptic Training on Real Surgical Drilling Proficiency. In: Proc. Worldhaptics Conf., Tsukuba, Japan, pp. 601–603 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gosselin, F., Ferlay, F., Bouchigny, S., Mégard, C., Taha, F. (2010). Design of a Multimodal VR Platform for the Training of Surgery Skills. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds) Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol 6192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14075-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14075-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14074-7

  • Online ISBN: 978-3-642-14075-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics