Skip to main content

Categorization and Object Shape

  • Chapter
  • First Online:
Towards a Theory of Thinking

Part of the book series: On Thinking ((ONTHINKING))

Abstract

Categorization is essential for perception and provides an important foundation for higher cognitive functions. In this review, I focus on perceptual aspects of categorization, especially related to object shape. In order to visually categorize an object, the visual system has to solve two basic problems. The first one is how to recognize objects after spatial transformations like rotations and size-scalings. The second problem is how to categorize objects with different shapes as members of the same category. I review the literature related to these two problems against the background of the hierarchy of transformation groups specified in Felix Klein’s Erlanger Programm. The Erlanger Programm provides a general framework for the understanding of object shape, and may allow integrating object recognition and categorization literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In addition, the basic level is the most inclusive level at which we tend to interact with objects in a similar way (Rosch et al. 1976), indicating the importance of knowledge about motor interactions for categorization (see Helbig et al. 2006).

  2. 2.

    In mathematics, a group is a set that has rules for combining any pair of elements in the set, and that obeys four properties: closure, associativity, existence of an identity element and an inverse element. The mathematical concept of group has been used in cognitive psychology (e.g., Bedford 2001; Chen 2005; Dodwell 1983; Leyton 1992; Palmer 1983, 1989; Shepard 1994).

  3. 3.

    The Euclidean similarity group can be further subdivided (e.g., Bedford 2001), but this is not important for present purposes. A more detailed description of the hierarchy of transformation groups can be found in Michaels and Carello (1981, p. 30-37), Palmer (1983), or Cutting (1986).

  4. 4.

    There are also transformations which go beyond point transformations (see Ihmig 1997). However, these do not seem to be of primary importance for an understanding of object shape.

  5. 5.

    Nonlinear transformations seem to play a role also within the visual system. The retina is not flat but curved, and projections onto the retina are therefore distorted in a nonlinear way. Moreover, the projection from the retina to the primary visual cortex is highly nonlinear.

  6. 6.

    Note that invariants need not necessarily be defined in relation to mathematical groups; invariants can be defined also regarding perspective transformations (e.g., Pizlo 1994), which do not fulfill the requirements of a mathematical group.

  7. 7.

    However, Edelman (1998) and Cutzu and Edelman (1996, 1998) do not interpret these results in terms of nonrigid transformations of pictorial representations, but regard the data as evidence for the existence of a low-dimensional monotonic psychological space, in which the similarity relations of the high-dimensional distal shape-space are represented. For a discussion of Edelman’s account of recognition and categorization see Graf (2002).

  8. 8.

    In a variation of this approach, Shepard (1994) claimed that the linearity of transformation time (in mental rotation tasks and apparent motion tasks) is an invariant.

  9. 9.

    Not only the extent but also the type of topological distortion might be relevant (in analogy to the affine transformation group, cp. Wagemans et al. 1996). However, possible influences of the type of topological transformations are not in the focus of this work (for a discussion of the types of transformation see Bedford 2001).

References

  • Ashbridge E, Perrett DI (1998) Generalizing across object orientation and size. In: Walsh V, Kulikowski J (eds) Perceptual constancy. Why things look as they do. Cambridge University Press, Cambridge, pp 192-209

    Google Scholar 

  • Ashby FG, Maddox WT (2005) Human category learning. Annu Rev Psychol 56:149-178

    Article  PubMed  Google Scholar 

  • Barsalou LW (1999) Perceptual symbol systems. Behav Brain Sci 22:577-660

    CAS  PubMed  Google Scholar 

  • Basri R (1996) Recognition by prototypes. Int J Comput Vis 19:147-167

    Article  Google Scholar 

  • Basri R, Costa L, Geiger D, Jacobs D (1998) Determining the similarity of deformable shapes. Vis Res 38:2365-2385

    Article  CAS  PubMed  Google Scholar 

  • Baumberg A, Hogg D (1994) Learning flexible models from image sequences. Proceedings of the Third European Conference on Computer Vision 1994. Springer, Berlin, pp 299-308

    Google Scholar 

  • Bedford F (2001) Towards a general law of numerical/object identity. Curr Psychol Cogn 20:113-176

    Google Scholar 

  • Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24:509-522

    Article  Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115-147

    Article  CAS  PubMed  Google Scholar 

  • Biederman I, Cooper EE (1991) Priming contour-deleted images: evidence for intermediate representations in visual object recognition. Cogn Psychol 23:393-419

    Article  CAS  PubMed  Google Scholar 

  • Biederman I, Ju G (1988) Surface vs. edge-based determinants of visual recognition. Cogn Psychol 20:38-64

    Article  CAS  PubMed  Google Scholar 

  • Bruce V (1994) Stability from variation: the case of face recognition. The M.D. Vernon memorial lecture. Q J Exp Psychol 47A:5-28

    Google Scholar 

  • Bruce V, Burton M, Doyle T, Dench N (1989) Further experiments on the perception of growth in three dimensions. Percept Psychophys 46:528-536

    CAS  PubMed  Google Scholar 

  • Bruce V, Doyle T, Dench N, Burton M (1991) Remembering facial configurations. Cognition 38:109-144

    Article  CAS  PubMed  Google Scholar 

  • Bundesen C, Larsen A (1975) Visual transformation of size. J Exp Psychol Hum Percept Perform 1:214-220

    Article  CAS  PubMed  Google Scholar 

  • Bundesen C, Larsen A, Farrell JE (1981) Mental transformations of size and orientation. In: Long J, Baddeley A (eds) Attention and Performance, IX. Erlbaum, Hillsdale, NJ, pp 279-294

    Google Scholar 

  • Carlsson S (1999) Order structure, correspondence and shape based categories. In Forsyth DA, Mundy JL, di Gesú V, Cipolla R (eds) Shape, contour and grouping in computer vision. Lecture Notes in Computer Science 1681. Springer, Berlin, pp 58-71

    Google Scholar 

  • Cassirer E (1944) The concept of group and the theory of perception. Philos Phenomenol Res 5:1-35

    Article  Google Scholar 

  • Cave KR, Kosslyn SM (1989) Varieties of size-specific visual selection. J Exp Psychol Gen 118:148-164

    Article  CAS  PubMed  Google Scholar 

  • Cave CB, Kosslyn SM (1993) The role of parts and spatial relations in object identification. Perception 22:229-248

    Article  CAS  PubMed  Google Scholar 

  • Cave KR, Pinker S, Giorgi L, Thomas CE, Heller LM, Wolfe JM, Lin H (1994) The representation of location in visual images. Cogn Psychol 26:1-32

    Article  CAS  PubMed  Google Scholar 

  • Chen L (1982) Topological structure in visual perception. Science 218:699-700

    Article  CAS  PubMed  Google Scholar 

  • Chen L (1985) Topological structure in the perception of apparent motion. Perception 14:197-208

    Article  CAS  PubMed  Google Scholar 

  • Chen L (2001) Perceptual organization: to reverse back the inverted (upside-down) question of feature binding. Vis Cogn 8:287-303

    Article  Google Scholar 

  • Chen L (2005) The topological approach to perceptual organization. Vis Cogn 12:553-637

    Article  Google Scholar 

  • Clark HH, Clark EV (1977) Psychology and language. Hartcourt Brace Jovanovich, New York

    Google Scholar 

  • Cohen AL, Nosofsky RM (2000) An exemplar-retrieval model of speeded same-different judgments. J Exp Psychol Hum Percept Perform 26:1549-1569

    Article  CAS  PubMed  Google Scholar 

  • Cooper EE, Biederman I (1993) Geon differences during object recognition are more salient than metric differences. Poster presented at the annual meeting of the Psychonomic Society. Washington DC

    Google Scholar 

  • Cootes TF, Taylor CJ, Cooper DH, Graham J (1992) Training models of shape from sets of examples. Proceedings of the British Machine Vision Conference 1992. Springer, Berlin, pp 9-18

    Google Scholar 

  • Corballis MC (1988) Recognition of disoriented shapes. Psychol Rev 95:115-123

    Article  CAS  PubMed  Google Scholar 

  • Courbon P, Tusques J (1932) Illusions d’intermetamorphose et de charme. Annales Medico-Psychologiques 14:401-406

    Google Scholar 

  • Cutting JE (1986) Perception with an eye for motion. MIT Univ Press, Cambridge, MA

    Google Scholar 

  • Cutzu F, Edelman S (1996) Faithful representation of similarities among three-dimensional shapes in human vision. Proc Natl Acad Sci 93:12046-12050

    Article  CAS  PubMed  Google Scholar 

  • Cutzu F, Edelman S (1998) Representation of object similarity in human vision: psychophysics and a computational model. Vis Res 38:2229-2257

    Article  CAS  PubMed  Google Scholar 

  • Diamond R, Carey S (1986) Why faces are and are not special: an effect of expertise. J Exp Psychol Gen 115:107-117

    Article  CAS  PubMed  Google Scholar 

  • Dill M, Edelman S (2001) Imperfect invariance to object translation in the discrimination of complex shapes. Perception 30:707-724

    Article  CAS  PubMed  Google Scholar 

  • Dill M, Fahle M (1998) Limited translation invariance of human visual pattern recognition. Percept Psychophys 60:65-81

    CAS  PubMed  Google Scholar 

  • Dixon P, Just MA (1978) Normalization of irrelevant dimensions in stimulus comparisons. J Exp Psychol Hum Percept Perform 4:36-46

    Article  CAS  PubMed  Google Scholar 

  • Dodwell PC (1983) The Lie transformation group model of visual perception. Percept Psychophys 34:1-16

    CAS  PubMed  Google Scholar 

  • Dürer A (1528) Vier Bücher von menschlicher proportion. Reprint on the basis of the original edition, 3rd edn (1996). Verlag Dr. Alfons Uhl, Nördlingen, Germany

    Google Scholar 

  • Eacott MJ, Gaffan D (1991) The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes. Behav Brain Res 46:95-98

    Article  CAS  PubMed  Google Scholar 

  • Edelman S (1995) Representation of similarity in three-dimensional object discrimination. Neural Comput 7:408-423

    Article  CAS  PubMed  Google Scholar 

  • Edelman S (1997) Computational theories of object recognition. Trends Cogn Sci 1:296-304

    Article  CAS  PubMed  Google Scholar 

  • Edelman S (1998) Representation is representation of similarities. Behav Brain Sci 21:449-498

    CAS  PubMed  Google Scholar 

  • Edelman S (1999) Representation and recognition in vision. MIT Univ Press, Cambridge, MA

    Google Scholar 

  • Edelman S, Intrator N (2000) (Coarse coding of shape fragments) + (retinotopy) ≈ representation of structure. Spatial Vis 13:255-264

    Article  CAS  Google Scholar 

  • Edelman S, Intrator N (2001) A productive, systematic framework for the representation of visual structure. In: Lean TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems 13. MIT Univ Press, Cambridge, MA, pp 10-16

    Google Scholar 

  • Ellis HD, Young AW (1990) Accounting for delusional misidentifications. Br J Psychiatry 157:239-248

    Article  CAS  PubMed  Google Scholar 

  • Faillenot I, Toni I, Decety J, Grégoire M-C, Jeannerod M (1997) Visual pathways for object-oriented action and object recognition. Functional anatomy with PET. Cereb Cortex 7:77-85

    CAS  Google Scholar 

  • Faillenot I, Decety J, Jeannerod M (1999) Human brain activity related to the perception of spatial features of objects. NeuroImage 10:114-124

    Article  CAS  PubMed  Google Scholar 

  • Farah MJ (2000) The cognitive neuroscience of vision. Blackwell, Oxford, UK

    Google Scholar 

  • Farah MJ, Hammond KM (1988) Mental rotation and orientation-invariant object recognition: dissociable processes. Cognition 29:29-46

    Article  CAS  PubMed  Google Scholar 

  • Foster DH (1973) A hypothesis connecting visual pattern recognition and apparent motion. Kybernetik 13:151-154

    CAS  PubMed  Google Scholar 

  • Foster DH (1978) Visual apparent motion and the calculus of variations. In: Leeuwenberg ELJ, Buffart HFJM (eds) Formal theories of visual perception. Wiley, New York, pp 67-82

    Google Scholar 

  • Foster DH, Gilson SJ (2002) Recognizing novel three-dimensional objects by summing signals from parts and views. Proc R Soc Lond B 269:1939-1947

    Article  Google Scholar 

  • Foster DH, Kahn JI (1985) Internal representations and operations in visual comparison of transformed patterns: effects of pattern point-inversion, positional symmetry, and separation. Biol Cybern 51:305-312

    Article  CAS  PubMed  Google Scholar 

  • Gauthier I, Tarr MJ (1997) Orientation priming of novel shapes in the context of viewpoint-dependent recognition. Perception 26:51-73

    Article  CAS  PubMed  Google Scholar 

  • Gauthier I, Hayward WG, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (2002) BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron 34:161-171

    Article  CAS  PubMed  Google Scholar 

  • Gentner D, Markman AB (1994) Structural alignment in comparison: no difference without similarity. Psychol Sci 5:152-158

    Article  Google Scholar 

  • Gentner D, Markman AB (1995) Similarity is like analogy. In: Cacciari C (ed) Similarity in language, thought, and perception. Brepols, Brussels, Belgium, pp 111-148

    Google Scholar 

  • Georgopoulos AP (2000) Neural mechanisms of motor cognitive processes: functional MIT Univ Press and neurophysiological studies. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Univ Press, Cambridge, MA, pp 525-538

    Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234-236

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Goldstone RL (1994a) Similarity, interactive activation, and mapping. J Exp Psychol Learn Memory Cogn 20:3-28

    Article  Google Scholar 

  • Goldstone RL (1994b) The role of similarity in categorization: providing a groundwork. Cognition 52:125-157

    Article  CAS  PubMed  Google Scholar 

  • Goldstone RL (1996) Alignment-based nonmonotonicities in similarity. J Exp Psychol Learn Memory Cogn 22:988-1001

    Article  CAS  Google Scholar 

  • Goldstone RL, Medin DL (1994) Time course of comparison. J Exp Psychol Learn Memory Cogn 20:29-50

    Article  Google Scholar 

  • Goodale MA, Milner AD (2004) Sight unseen. Oxford University Press, Oxford

    Google Scholar 

  • Graf M (2002) Form, space and object. Geometrical transformations in object recognition and categorization. Wissenschaftlicher Verlag, Berlin

    Google Scholar 

  • Graf M (2006) Coordinate transformations in object recognition. Psychol Bull 132:920-945

    Article  PubMed  Google Scholar 

  • Graf M, Bülthoff HH (2003) Object shape in basic level categorisation. In Schmalhofer F, Young RM, Katz G (eds) Proceedings of the European Cognitive Science Conference. Lawrence Erlbaum, Mahwah, NJ, pp 390

    Google Scholar 

  • Graf M, Kaping D, Bülthoff HH (2005) Orientation congruency effects for familiar objects: coordinate transformations in object recognition. Psychol Sci 16:214-221

    Article  CAS  PubMed  Google Scholar 

  • Graf M, Bundesen C, Schneider WX (2009) Topological transformations in basic level object categorization. Manuscript submitted for publication

    Google Scholar 

  • Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13:1-8

    Article  CAS  Google Scholar 

  • Grill-Spector K, Sayres R (2008) Object recognition: insights from advances in fMRI methods. Curr Dir Psychol Sci 17:73-79

    Article  Google Scholar 

  • Hahn U, Chater N, Richardson LB (2003) Similarity as transformation. Cognition 87:1-32

    Article  PubMed  Google Scholar 

  • Hahn U, Close J, Graf M (2009) Transformation direction influences shape-similarity judgments. Psychological Science, 20:447-454. DOI: 10.1111/j.1467-9280.2009.02310.x

    Article  PubMed  Google Scholar 

  • Harris IM, Benito CT, Ruzzoli M, Miniussi C (2008) Effects of right parietal transcranial magnetic stimulation on object identification and orientation judgments. Journal of Cognitive Neuroscience, 20:916-926

    Article  PubMed  Google Scholar 

  • Hatfield G (2003) Representation and constraints: the inverse problem and the structure of visual space. Acta Psychol 114:355-378

    Article  Google Scholar 

  • Hayward WG (2003) After the viewpoint debate: where next in object recognition? Trends Cogn Sci 7:425-427

    Article  PubMed  Google Scholar 

  • Helbig HB, Graf M, Kiefer M (2006) The role of action representations in visual object recognition. Exp Brain Res 174:221-228

    Article  PubMed  Google Scholar 

  • Homa D, Cross J, Cornell D, Goldman D, Shwartz S (1973) Prototype abstraction and classification of new instances as a function of number of instances defining the prototype. J Exp Psychol 101:116-122

    Article  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849-937

    Article  CAS  PubMed  Google Scholar 

  • Hummel JE, Biederman I (1992) Dynamic binding in a neural network for shape recognition. Psychol Rev 99:480-517

    Article  CAS  PubMed  Google Scholar 

  • Hummel JE, Stankiewicz BJ (1998) Two roles for attention in shape perception: a structural description model of visual scrutiny. Vis Cogn 5:49-79

    Article  Google Scholar 

  • Ihmig K-N (1997) Cassirers Invariantentheorie der Erfahrung und seine Rezeption des “Erlanger Programms”. Cassirer Forschungen, Band 2. Felix Meiner Verlag, Hamburg

    Google Scholar 

  • Jolicoeur P (1985) The time to name disoriented natural objects. Memory Cogn 13:289-303

    CAS  Google Scholar 

  • Jolicoeur P (1987) A size-congruency effect in memory for visual shape. Memory Cogn 15:531-543

    CAS  Google Scholar 

  • Jolicoeur P (1988) Mental rotation and the identification of disoriented objects. Can J Psychol 42:461-478

    CAS  PubMed  Google Scholar 

  • Jolicoeur P (1990a) Identification of disoriented objects: a dual-systems theory. Mind Lang 5:387-410

    Google Scholar 

  • Jolicoeur P (1990b) Orientation congruency effects on the identification of disoriented shapes. J Exp Psychol Hum Percept Perform 16:351-364

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur P (1992) Orientation congruency effects in visual search. Can J Psychol 46:280-305

    CAS  PubMed  Google Scholar 

  • Jolicoeur P, Humphrey GK (1998) Perception of rotated two-dimensional and three-dimensional objects and visual shapes. In Walsh V, Kulikowski J (eds) Perceptual constancy. Why things look as they do. Cambridge University Press, Cambridge, pp 69-123

    Google Scholar 

  • Jolicoeur P, Gluck MA, Kosslyn SM (1984) Pictures and names: making the connection. Cogn Psychol 16:243-275

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur P, Corballis MC, Lawson R (1998) The influence of perceived rotary motion on the recognition of rotated objects. Psychon Bull Rev 5:140-146

    Google Scholar 

  • Kayaert G, Biederman I, Op de Beeck H, Vogels R (2005) Tuning for shape dimensions in macaque inferior temporal cortex. Eur J Neurosci 22:212-224

    Article  PubMed  Google Scholar 

  • Klein F (1872/1893) Vergleichende Betrachtungen über neuere geometrische Forschungen. Mathematische Annalen 43:63-100

    Google Scholar 

  • Knappmeyer B, Thornton IM, Bülthoff HH (2003) The use of facial motion and facial form during the processing of identity. Vis Res 43:1921-1936

    Article  PubMed  Google Scholar 

  • Kosslyn SM (1994) Image and brain. MIT Univ Press, Cambridge, MA

    Google Scholar 

  • Kosslyn SM, Alpert NM, Thompson WL, Chabris CF, Rauch SL, Anderson AK (1994) Identifying objects seen from different viewpoints. A PET investigation. Brain 117:1055-1071

    Google Scholar 

  • Kourtzi Z, Shiffrar M (2001) Visual representation of malleable and rigid objects that deform as they rotate. J Exp Psychol Hum Percept Perform 27:335-355

    Article  CAS  PubMed  Google Scholar 

  • Labov W (1973) The boundaries of words and their meanings. In: Bailey C-JN, Shuy RW (eds) New ways of analyzing variations in English. Georgetown University Press, Washington, D.C

    Google Scholar 

  • Lakoff G (1987) Women, fire, and dangerous things. What categories reveal about the mind. University of Chicago Press, Chicago

    Google Scholar 

  • Lakoff G, Johnson M (1999) Philosophy in the flesh: the embodied mind and Its challenge to western thought. Basic Books, New York, NY

    Google Scholar 

  • Lamme VAF (2003) Why visual attention and awareness are different. Trends Cogn Sci 7:12-18

    Article  PubMed  Google Scholar 

  • Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571-579

    Article  CAS  PubMed  Google Scholar 

  • Landau B (1994) Object shape, object name, and object kind: representation and development. In: Medin DL (ed) The psychology of learning and motivation 31. Academic Press, New York, pp 253-304

    Chapter  Google Scholar 

  • Larsen A, Bundesen C (1978) Size scaling in visual pattern recognition. J Exp Psychol Hum Percept Perform 4:1-20

    Article  CAS  PubMed  Google Scholar 

  • Lawson R, Humphreys GW (1998) View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects. Percept Psychophys 60:1052-1066

    CAS  PubMed  Google Scholar 

  • Lawson R, Jolicoeur P (1998) The effects of plane rotation on the recognition of brief masked pictures of familiar objects. Memory Cogn 26:791-803

    CAS  Google Scholar 

  • Lawson R, Jolicoeur P (1999) The effect of prior experience on recognition thresholds for plane-disoriented pictures of familiar objects. Memory Cogn 27:751-758

    CAS  Google Scholar 

  • Lawson R, Humphreys GW, Jolicoeur P (2000) The combined effects of plane disorientation and foreshortening on picture naming: one manipulation are two? J Exp Psychol Hum Percept Perform 26:568-581

    Article  CAS  PubMed  Google Scholar 

  • Leech R, Mareschal D, Cooper RP (2008) Analogy as relational priming: A developmental and computational perspective on the origins of a complex cognitive skill. Behavioral and Brain Sciences 31:357-378

    PubMed  Google Scholar 

  • Leopold DA, O’Toole AJ, Vetter T, Blanz V (2001) Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci 4:89-94

    Article  CAS  PubMed  Google Scholar 

  • Leyton M (1992) Symmetry, causality, mind. MIT Univ Press, Cambridge, MA

    Google Scholar 

  • Lowe DG (1985) Perceptual organization and visual recognition. Kluwer, Boston, MA

    Google Scholar 

  • Lowe DG (1987) Three-dimensional object recognition from single two-dimensional images. Artif Intell 31:355-395

    Article  Google Scholar 

  • Luneburg RK (1947) Mathematical analysis of binocular vision. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Lurito T, Georgakopoulos T, Georgopoulos AP (1991) Cognitive spatial-motor processes: 7. The making of movements at an angle from a stimulus direction: studies of motor cortical activity at the single cell and population levels. Exp Brain Res 87:562-580

    CAS  Google Scholar 

  • Maddox WT, Ashby FG (1996) Perceptual separability, and the identification-speeded classification relationship. J Exp Psychol Hum Percept Perform 22:795-817

    Article  CAS  PubMed  Google Scholar 

  • Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cogn Sci 6:176-184

    Article  PubMed  Google Scholar 

  • Mark LS, Todd JT (1985) Describing perceptual information about human growth in terms of geometric invariants. Percept Psychophys 37:249-256

    CAS  PubMed  Google Scholar 

  • Markman AB (2001) Structural alignment, similarity, and the internal structure of category representations. In: Hahn U, Ramscar M (eds) Similarity and categorization. Oxford University Press, Oxford, pp 109-130

    Google Scholar 

  • Markman AB, Gentner D (1993a) Splitting the differences: a structural alignment view of similarity. J Memory Lang 32:517-535

    Article  Google Scholar 

  • Markman AB, Gentner D (1993b) Structural alignment during similarity comparisons. Cogn Psychol 25:431-467

    Article  Google Scholar 

  • Markman AB, Gentner D (1997) The effects of alignability on memory. Psychol Sci 8:363-367

    Article  Google Scholar 

  • Markman AB, Wisniewski EJ (1997) Similar and different: the differentiation of basic-level categories. J Exp Psychol Learn Memory Cogn 23:54-70

    Article  Google Scholar 

  • Medin DL, Goldstone RL, Gentner D (1993) Respects for similarity. Psychol Rev 100:254-278

    Article  Google Scholar 

  • Michaels CF, Carello C (1981) Direct perception. Prenctice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Milliken B, Jolicoeur P (1992) Size effects in visual recognition memory are determined by perceived size. Memory Cogn 20:83-95

    CAS  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford, England

    Google Scholar 

  • Murphy GL (1991) Parts in object concepts: experiments with artificial categories. Memory Cogn 19:423-438

    CAS  Google Scholar 

  • Murphy GL (2002) The big book of concepts. MIT Univ Press, Cambridge, MA

    Google Scholar 

  • Murphy GL, Medin DL (1985) The role of theories in conceptual coherence. Psychol Rev 92:289-316

    Article  CAS  PubMed  Google Scholar 

  • Nazir TA, O’Regan JK (1990) Some results on translation invariance in the human visual system. Spat Vis 5:81-100

    Article  CAS  PubMed  Google Scholar 

  • Newell FN, Sheppard DM, Edelman S, Shapiro KL (2005) The interaction of shape- and location-based priming in object categorisation: evidence for a hybrid “what+where” representation stage. Vis Res 45:2065-2080

    Article  PubMed  Google Scholar 

  • Niall KK (1992) Projective invariance and the kinetic depth effect. Acta Psychol 81:127-168

    Article  CAS  Google Scholar 

  • Niall KK (2000) Some plane truths about pictures: notes on Wagemans, Lamote, and van Gool (1997). Spat Vis 13:1-24

    Article  CAS  PubMed  Google Scholar 

  • Niall KK, Macnamara J (1990) Projective invariance and picture perception. Perception 19:637-660

    Article  CAS  PubMed  Google Scholar 

  • Nosofsky RM (1986) Attention, similarity, and the identification-categorization-relationship. J Exp Psychol Gen 115:39-57

    Article  CAS  PubMed  Google Scholar 

  • Palmer SE (1983) The psychology of perceptual organization: a transformational approach. In: Beck J, Hope B, Rosenfeld A (eds) Human and machine vision. Academic Press, New York, pp 269-339

    Google Scholar 

  • Palmer SE (1989) Reference frames in the perception of shape and orientation. In: Shepp BE, Ballesteros S (eds) Object perception: structure and process. Erlbaum, Hillsdale, NJ, pp 121-163

    Google Scholar 

  • Palmer SE (1999) Vision science. Photons to phenomenology. MIT Univ Press, Cambridge, MA

    Google Scholar 

  • Palmer SE, Rosch E, Chase P (1981) Canonical perspective and the perception of objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, NJ, pp 135-151

    Google Scholar 

  • Palmeri TJ, Gauthier I (2004) Visual object understanding. Nat Rev Neurosci 5:1-13

    Article  CAS  Google Scholar 

  • Perrett DI, Oram WM, Ashbridge E (1998) Evidence accumulation in cell populations responsive to faces: an account of generalization of recognition without mental transformations. Cognition 67:111-145

    Article  CAS  PubMed  Google Scholar 

  • Pittenger JB, Shaw RE (1975) Aging faces as viscal-elastic events: implications for a theory of nonrigid shape perception. J Exp Psychol Hum Percept Perform 1:374-382

    Article  CAS  PubMed  Google Scholar 

  • Pittenger JB, Shaw RE, Mark LS (1979) Perceptual information for the age level of faces as a higher order invariant of growth. J Exp Psychol Hum Percept Perform 5:478-493

    Article  CAS  PubMed  Google Scholar 

  • Pitts W, McCulloch WS (1947) How we know universals: the perception of auditory and visual forms. Bull Math Biophys 9:127-147

    Article  CAS  PubMed  Google Scholar 

  • Pizlo Z (1994) A theory of shape constancy based on perspective invariants. Vis Res 34:1637-1658

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Keele S (1968) On the genesis of abstract ideas. J Exp Psychol 77:353-363

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Keele S (1970) Retention of abstract ideas. J Exp Psychol 83:304-308

    Article  Google Scholar 

  • Posner MI, Goldsmith R, Welton KE (1967) Perceived distance and the classification of distorted patterns. J Exp Psychol 73:28-38

    Article  CAS  PubMed  Google Scholar 

  • Prinz W (1990) A common coding approach to perception and action. In: Neumann O, Prinz W (eds) Relationships between perception and action: current approaches. Springer, Berlin, New York, pp 167-201

    Google Scholar 

  • Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129-154

    Article  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019-1025

    Article  CAS  PubMed  Google Scholar 

  • Riesenhuber M, Poggio T (2002) Neural mechanisms of object recognition. Curr Opin Neurobiol 12:162-168

    Article  CAS  PubMed  Google Scholar 

  • Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P (1976) Basic objects in natural categories. Cogn Psychol 8:382-439

    Article  Google Scholar 

  • Salinas E, Abbott LF (2001) Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. In Nicolelis MAL (ed) Advances in neural population coding. Progress in brain research, vol 130. Elsevier, Amsterdam, pp 175-190

    Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430-440

    Article  CAS  PubMed  Google Scholar 

  • Schweinberger SR, Burton AM, Kelly SW (1999) Asymmetric dependencies in perceiving identity and emotion: experiments with morphed faces. Percept Psychophys 61:1102-1115

    CAS  PubMed  Google Scholar 

  • Schyns PG (1997) Categories and concepts: a bi-directional framework for categorization. Trends Cogn Sci 1:183-189

    Article  CAS  PubMed  Google Scholar 

  • Sclaroff S (1997) Deformable prototypes for encoding shape categories in image databases. Pattern Recogn 30:627-642

    Article  Google Scholar 

  • Sclaroff S, Liu L (2001) Deformable shape detection and description via model-based region grouping. IEEE Trans Pattern Anal Mach Intell 23:475-489

    Article  Google Scholar 

  • Seger CA, Poldrack RA, Prabhakaran V, Zhao M, Glover G, Gabrieli JDE (2000) Hemispheric asymmetries and individual differences in visual concept learning as measured by functional MRI. Neuropsychologia 38:1316-1324

    Article  CAS  PubMed  Google Scholar 

  • Shaw R, Pittenger J (1977) Perceiving the face of change in changing faces: implications for a theory of object perception. In Shaw R, Bransford J (eds) Perceiving, acting, and knowing. Toward an ecological psychology. Erlbaum, Hillsdale, NJ pp. 103-132

    Google Scholar 

  • Shepard RN (1994) Perceptual-cognitive universals as reflections of the world. Psychon Bull Rev 1:2-28

    Google Scholar 

  • Srinivas K (1993) Perceptual specificity in nonverbal priming. J Exp Psychol Learn Memory Cogn 19:582-602

    Article  Google Scholar 

  • Sugio T, Inui T, Matsuo K, Matsuzawa M, Glover GH, Nakai T (1999) The role of the posterior parietal cortex in human object recognition: a functional magnetic resonance imaging study. Neurosci Lett 276:45-48

    Article  CAS  PubMed  Google Scholar 

  • Suppes P (1977) Is visual space Euclidean? Synthese 35:397-421

    Article  Google Scholar 

  • Tarr MJ (2003) Visual object recognition: can a single mechanism suffice? In Peterson MA, Rhodes G (eds) Perception of faces, objects, and scenes. Analytic and holistic processes. Oxford University Press, Oxford, England, pp 177-211

    Google Scholar 

  • Tarr MJ, Gauthier I (1998) Do viewpoint-dependent mechanisms generalize across members of a class? Cognition 67:71-109

    Google Scholar 

  • Tarr MJ, Williams P, Hayward WG, Gauthier I (1998) Three-dimensional object recognition is viewpoint-dependent. Nat Neurosci 1:275-277

    Article  CAS  PubMed  Google Scholar 

  • Thoma V, Hummel JE, Davidoff J (2004) Evidence for holistic representations of ignored images and analytic representations of attended images. J Exp Psychol Hum Percept Perform 30:257-267

    Article  PubMed  Google Scholar 

  • Thompson D’AW (1917) On growth and form, 2nd edn. (1942). Cambridge University Press, Cambridge

    Google Scholar 

  • Todd JT, Chen L, Norman JF (1998) On the relative salience of Euclidean, affine, and topological structure for 3-D form discrimination. Perception 27:273-282

    Article  CAS  PubMed  Google Scholar 

  • Tversky B, Hemenway K (1984) Objects, parts, and categories. J Exp Psychol Gen 113:169-193

    Article  CAS  PubMed  Google Scholar 

  • Ullman S (1989) Aligning pictorial descriptions: an approach to object recognition. Cognition 32:193-254

    Article  CAS  PubMed  Google Scholar 

  • Ullman S (1996) High-level vision. Object recognition and visual cognition. MIT Univ Press, Cambridge, MA

    Google Scholar 

  • Ullman S (2007) Object recognition and segmentation by a fragment-based hierarchy. Trends Cogn Sci 11:58-64

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4:157-165

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Univ Press, Cambridge, MA, pp 549-586

    Google Scholar 

  • Van Gool LJ, Moons T, Pauwels E, Wagemans J (1994) Invariance from the Euclidean geometer’s perspective. Perception 23:547-561

    Article  PubMed  Google Scholar 

  • Vernon MD (1952) A further study of visual perception. Cambridge University Press, London

    Google Scholar 

  • Vogels R, Sary G, Dupont P, Orban GA (2002) Human brain regions involved in visual categorization. NeuroImage 16:401-414

    Article  PubMed  Google Scholar 

  • Vuilleumier P, Henson RN, Driver J, Dolan RJ (2002) Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat Neurosci 5:491-499

    Article  CAS  PubMed  Google Scholar 

  • Wagemans J, Van Gool L, Lamote C (1996) The visual systems measurement of invariants need not itself be invariant. Psychol Sci 7:232-236

    Article  Google Scholar 

  • Wagemans J, Lamote C, Van Gool L (1997) Shape equivalence under perspective and projective transformations. Psychon Bull Rev 4:248-253

    Google Scholar 

  • Wallis G, Bülthoff H (1999) Learning to recognize objects. Trends Cogn Sci 3:22-31

    Article  PubMed  Google Scholar 

  • Wang G, Tanifuji M, Tanaka K (1998) Funcitional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging. Neurosci Res 32:33-46

    Article  CAS  PubMed  Google Scholar 

  • Warren WH, Shaw RE (1985) Events and encounters as units of analysis for ecological psychology. In Warren WH, Shaw RE (eds) Persistence and change. Proceedings of the first international conference on event perception. Erlbaum, Hillsdale, NJ, pp 1-27

    Google Scholar 

  • Warrington EK, Taylor AM (1973) The contribution of the right parietal lobe to object recognition. Cortex 9:152-164

    CAS  PubMed  Google Scholar 

  • Warrington EK, Taylor AM (1978) Two categorical stages of object recognition. Perception 7:695-705

    Article  CAS  PubMed  Google Scholar 

  • Watson AB (1978) A Riemann geometric explanation of the visual illusions and figural after-effects. In: Leeuwenberg E, Buffart H (eds) Formal theories of visual perception. Wiley, New York, NY, pp 139-169

    Google Scholar 

  • Waxman SR (1990) Linguistic biases and the establishment of conceptual hierarchies: evidence from preschool children. Cogn Dev 5:123-150

    Article  Google Scholar 

  • Willems B, Wagemans J (2001) Matching multicomponent objects from different viewpoints: mental rotation as normalization? J Exp Psychol Hum Percept Perform 27:1090-1115

    Article  CAS  PubMed  Google Scholar 

  • Witkin A, Terzopoulos D, Kass M (1987) Signal matching through scale space. Int J Comput Vis 2:133-144

    Article  Google Scholar 

  • Young AW, Rowland D, Calder AJ, Etcoff NL, Seth A, Perrett DI (1997) Facial expression megamix: tests of dimensional and category accounts of emotion recognition. Cognition 63:271-313

    Article  CAS  PubMed  Google Scholar 

  • Zaki SR, Homa D (1999) Concepts and transformational knowledge. Cogn Psychol 39:69-115

    Article  CAS  PubMed  Google Scholar 

Download references

Author Note

The work has been supported by a grant from the Max Planck Institute for Biological Cybernetics, Tübingen, and from the Max Planck Institute for Human and Cognitive Brain Sciences, Leipzig. I thank Christoph Dahl for substantial help in creating the 3D morph objects, some of which are depicted in Fig. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graf, M. (2010). Categorization and Object Shape. In: Glatzeder, B., Goel, V., Müller, A. (eds) Towards a Theory of Thinking. On Thinking. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03129-8_6

Download citation

Publish with us

Policies and ethics