Skip to main content

Concepts of Symmetry in the Work of Wolfgang Pauli

  • Chapter
Recasting Reality

Summary

Symmetry was one of the most important methodological themes in 20th-century physics and is probably going to play no lesser role in the physics of the 21st century. As used today, there are a variety of interpretations of this term, which differ in meaning as well as their mathematical consequences. Symmetries of crystals, for example, generally express another kind of invariance than gauge symmetries, though in specific situations the distinctions may become quite subtle. I will review some of the various notions of symmetry and highlight some of their uses in specific examples taken from Pauli’s scientific oevre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrov, A.D. (1975): Mappings of spaces with families of cones and space-time transformations. Annali di Matematica Pura ed Applicata 103, 229–257.

    Article  Google Scholar 

  • Anderson, J.L. (1967): Principles of Relativity Physics. Academic Press, New York.

    Google Scholar 

  • Arens, R. (1971): Classical Lorentz invariant particles. Journal of Mathematical Physics 12, 2415–2422.

    Article  Google Scholar 

  • Bacry, H. (1967): Space-time and degrees of freedom of the elementary particle. Communications in Mathematical Physics 5, 97–105.

    Article  Google Scholar 

  • Bellac, M. le and L´vy-Leblond, J.M. (1973): Galilean electromagnetism. Nuovo Cimento 14B, 217–233.

    Google Scholar 

  • Bohr, N., Kramers, H.A. and Slater, J.C. (1924): Über die Quantentheorie der Strahlung. Zeitschrift für Physik 24, 69–87.

    Article  Google Scholar 

  • Bopp, F. and Haag, R. (1950): Über die Möglichkeit von Spinmodellen. Zeitschrift für Naturforschung 5a, 644–653.

    Google Scholar 

  • Brown, H. (2005): Physical Relativity: Space-Time Structure from a Dynamical Perspective. Oxford University Press, Oxford.

    Google Scholar 

  • Cantor, G. (1895): Beiträge zur Begründung der transfiniten Mengenlehre. (Erster Artikel). Mathematische Annalen 46, 481–512.

    Article  Google Scholar 

  • Case, K.M. (1957): Reformulation of the Majorana theory of the neutrino. Physical Review 107, 307–316.

    Article  Google Scholar 

  • Coleman, R.A. and Korte, H. (1980): Jet bundles and path structures. Journal of Mathematical Physics 21, 1340–1351.

    Article  Google Scholar 

  • Coleman, S. and Mandula, J. (1967): All possible symmetries of the S matrix. Physical Review 159, 1251–1256.

    Article  Google Scholar 

  • Ehlers, J. and Köhler, E. (1977): Path structures on manifolds. Journal of Mathematical Physics 18, 2014–2018.

    Article  Google Scholar 

  • Einstein, A. (1914a): Prinzipielles zur verallgemeinerten Relativitätstheorie und Gravitationstheorie. Physikalische Zeitschrift 15, 176–180.

    Google Scholar 

  • Einstein, A. (1914b): Die formale Grundlage der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlichen Preussischen Akademie der Wissenschaften 1914, 1030–1085.

    Google Scholar 

  • Einstein, A. (1918): Prinzipielles zur allgemeinen Relativitätstheorie. Annalen der Physik 55, 241–244.

    Article  Google Scholar 

  • Einstein, A. (1920): Diskussionsbemerkung. Physikalische Zeitschrift 21, 662.

    Google Scholar 

  • Einstein, A. (1925): Elektron und allgemeine Relativitätstheorie. Physica 5, 330–334.

    Google Scholar 

  • Einstein, A. and Grossmann, M. (1914a): Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Zeitschrift für Mathematik und Physik 62, 225–261.

    Google Scholar 

  • Einstein, A. and Grossmann, M. (1914b): Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie. Zeitschrift für Mathematik und Physik 63, 215–225.

    Google Scholar 

  • Einstein, A. and Pauli, W. (1943): On the non-existence of regular stationary solutions of relativistic field equations. Annals of Mathematics 44, 131–137.

    Article  Google Scholar 

  • Enz, C.P. (1957): Fermi interaction with non-conservation of ‘Lepton charge’ and of parity. Nuovo Cimento 6, 250–254.

    Article  Google Scholar 

  • Enz, C.P. (2002): No Time to Be Brief. Oxford University Press, Oxford.

    Google Scholar 

  • Enz, C.P. and Meyenn, K. von (eds.) (1994): Wolfgang Pauli. Writings on Physics and Philosophy. Springer, Berlin.

    Google Scholar 

  • Fierz, M. (1939): Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helvetica Physica Acta 12, 3–37.

    Article  Google Scholar 

  • Fierz, M. and Pauli, W. (1939): On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proceedings of the Royal Society (London) A173, 211–232.

    Article  Google Scholar 

  • Fierz, M. and Weisskopf, V.F. (eds.) (1960): Theoretical Physics in the Twentieth Century. A Memorial Volume to Wolfgang Pauli. Interscience, New York.

    Google Scholar 

  • Fushchich, W. and Nikitin, A. (1979): On the new invariance group of Maxwell equations. Lettere al Nuovo Cimento 24, 220–224.

    Article  Google Scholar 

  • Fushchich, W. and Shtelen, V. (1991): Are Maxwell’s equations invariant under the Galilei transformations? (in Russian). Doklady Akademii Nauk Ukrainy A3, 22–26.

    Google Scholar 

  • Fushchich, W., Shtelen, V. and Serov, N.I. (1993): Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics. Kluwer, Dordrecht.

    Google Scholar 

  • Giulini, D. (1995): Asymptotic symmetry groups of long-ranged gauge configurations. Modern Physics Letters A10, 2059–2070.

    Article  Google Scholar 

  • Giulini, D. (2006): Algebraic and geometric structures in special relativity. In: Lämmerzahl, C., and Ehlers, J. (eds.), Special Relativity: Will it Survive the Next 101 Years? Springer, Berlin, pp. 45–111.

    Google Scholar 

  • Giulini, D. (2007a): Some remarks on the notions of general covariance and background independence. In: Seiler, E., and Stamatescu, I.O. (eds.), Approaches to Fundamental Physics. Springer, Berlin, pp. 105–120.

    Google Scholar 

  • Giulini, D. (2007b): Electron spin or “classically non-describable two-valuedness”. http://arxiv.org/pdf/0710.3128.

  • Gödel, K. (1949): An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Reviews of Modern Physics 21, 447–450.

    Article  Google Scholar 

  • Goldin, G.A. and Shtelen, V.M (2001): On Galilei invariance and nonlinearity in electrodynamics and quantum mechanics. Physics Letters A279, 321–326.

    Google Scholar 

  • Goldstein, N.J. (2007): Inertiality implies the Lorentz group. Mathematical Physics Electronic Journal 13, paper 2, http://www.ma.utexas.edu/mpej/MPEJ.html

  • Golfand, Yu.A. (1971): Extension of the algebra of Poincar´ group generators and violation of P invariance. Journal of Experimental and Theoretical Physics Letters 13, 323–326.

    Google Scholar 

  • Gorla, P. (2008): The CUORE experiment: Bolometric detectors in 1-ton scale projects. Journal of Low Temperature Physics 151, M04.

    Google Scholar 

  • Gross, D. and Perry, M. (1983): Magnetic monopoles in Kaluza-Klein theories. Nuclear Physics B115, 29–48.

    Google Scholar 

  • Hawking, S.W., King, A.R. and McCarthy, P.J. (1976): A new topology for curved space-time which incorporates the causal, differential, and conformal structure. Journal of Mathematical Physics 17, 174–181.

    Article  Google Scholar 

  • Hermann, A., Meyenn, K. von and Weisskopf, V.F. (eds.) (1979): Wolfgang Pauli. Wissenschaftlicher Briefwechsel. Band I: 1919–1929. Springer, New York.

    Google Scholar 

  • Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J. and Stamatescu, I.O. (2003): Decoherence and the Appearence of a Classical World in Quantum Theory. Springer, Berlin.

    Google Scholar 

  • Jordan, P. and Pauli, W. (1928): Zur Quantenelektrodynamik ladungsfreier Felder. Zeitschrift für Physik 47, 151–173.

    Article  Google Scholar 

  • Jost, R. (1957): Eine Bemerkung zum CTP Theorem. Helvetica Physica Acta 30, 409–416.

    Google Scholar 

  • Kemmer, N., Polkinghorne, J. and Pursey, D. (1959): Invariance in elementary particle physics. Reports on Progress in Physics 22, 368–432.

    Article  Google Scholar 

  • Klein, F. (1872): Vergleichende Betrachtungen über neuere geometrische Forschungen. Verlag von Andreas Deichert, Erlangen. Reprinted in: Mathematische Annalen 43, 63-100, 1892.

    Google Scholar 

  • Kretschmann, E. (1917): Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie. Annalen der Physik 53, 575–614.

    Google Scholar 

  • Kronig, R. and Weisskopf, V.F. (eds.) (1964): Collected Scientific Papers by Wolfgang Pauli. Interscience, New York.

    Google Scholar 

  • Lüders, G. and Zumino, B. (1958): Connection between spin and statistics. Physical Review 110, 1450–1453.

    Article  Google Scholar 

  • Lee, T.D. and Yang, C.N. (1956): Question of parity conservation in weak interactions. Physical Review 104, 254–258.

    Article  Google Scholar 

  • Lorentz, H.A. (1914): Das Relativitätsprinzip. Drei Vorlesungen, bearbeitet von W.H. Keesom. Teubner, Leipzig.

    Google Scholar 

  • Mach, E. (1933): Die Mechanik in ihrer Entwicklung. 9. Auflage. Brockhaus, Leipzig.

    Google Scholar 

  • McLennan, J.A. (1957): Parity nonconservation and the theory of the neutrino. Physical Review 106, 821–822.

    Article  Google Scholar 

  • Meyenn, K. von (1987): Pauli’s belief in exact symmetries. In: Doncel, M.G., Hermann, A., Michel, L., and Pais, A. (eds.), Symmetries in Physics (1600–1980). Servei de Publicaciones, Bellaterra (Barcelona), pp. 329–358.

    Google Scholar 

  • Meyenn, K. von (ed.) (1985): Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band II: 1930–1939. Springer, Berlin.

    Google Scholar 

  • Meyenn, K. von (ed.) (1993): Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band III: 1940–1949. Springer, Berlin.

    Google Scholar 

  • Meyenn, K. von (ed.) (1996): Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band IV, Teil I: 1950–1952. Springer, Berlin.

    Google Scholar 

  • Meyenn, K. von (ed.) (1999): Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band IV, Teil II: 1953–1954. Springer, Berlin.

    Google Scholar 

  • Meyenn, K. von (ed.) (2001): Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band IV, Teil III: 1955–1956. Springer, Berlin.

    Google Scholar 

  • Meyenn, K. von (ed.) (2005a): Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band IV, Teil IV-A: 1957. Springer, Berlin.

    Google Scholar 

  • Meyenn, K. von (ed.) (2005b): Wolfgang Pauli. Wissenschaftlicher Briefwechsel, Band IV, Teil IV-B: 1958. Springer, Berlin.

    Google Scholar 

  • Minkowski, H. (1909): Raum und Zeit. Teubner, Leipzig.

    Google Scholar 

  • Nishijima, K. (2004): Pauli and the Pauli group. Nuclear Physics B – Proceedings Supplements 137, 1–4.

    Article  Google Scholar 

  • O’Raifeartaigh, L. (1965): Lorentz invariance and internal symmetry. Physical Review 139, B1052–B1062.

    Article  Google Scholar 

  • O’Raifeartaigh, L. and Straumann, N. (2000): Gauge theory: Historical origins and some modern developments. Reviews of Modern Physics 72, 1–23.

    Article  Google Scholar 

  • Pauli, W. (1919a): Merkurperihelbewegung und Strahlenablenkung in Weyl’s Gravitationstheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft 21, 742–750.

    Google Scholar 

  • Pauli, W. (1919b): Zur Theorie der Gravitation und der Elektrizität von Hermann Weyl. Physikalische Zeitschrift 20, 457–467.

    Google Scholar 

  • Pauli, W. (1925): Über den Einfluss der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt. Zeitschrift für Physik 31, 373–385.

    Article  Google Scholar 

  • Pauli, W. (1927): Zur Quantenmechanik des magnetischen Elektrons. Zeitschrift für Physik 43, 601–623.

    Article  Google Scholar 

  • Pauli, W. (1939): Über ein Kriterium für Ein- oder Zweiwertigkeit der Eigenfunktionen in der Wellenmechanik. Helvetica Physica Acta 12, 147–168.

    Google Scholar 

  • Pauli, W. (1940): The connection between spin and statistics. Physical Review 58, 716–722.

    Article  Google Scholar 

  • Pauli, W. (1941): Relativistic field theories of elementary particles. Reviews of Modern Physics 13, 203–232.

    Article  Google Scholar 

  • Pauli, W. (ed.) (1955): Niels Bohr and the Development of Physics. Pergamon Press, London.

    Google Scholar 

  • Pauli, W. (1956): Schluβwort durch den Präsidenten der Konferenz “Fünfzig Jahre Relativitätstheorie”. Helvetica Physica Acta, Supplementum IV, 261–267.

    Google Scholar 

  • Pauli, W. (1957a): Zur älteren und neueren Geschichte des Neutrinos. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 102, 387–388. Extended version in: W. Pauli: Aufsätze und Vorträge über Physik und Erkenntnistherorie. Vieweg, Braunschweig 1961. pp. 156–180.

    Google Scholar 

  • Pauli, W. (1957b): On the conservation of the lepton charge. Nuovo Cimento 6, 204–215.

    Article  Google Scholar 

  • Pauli, W. (1958a): Die Verletzung von Spiegelungs-Symmetrien in den Gesetzen der Atomphysik. Experientia 14, 1–5.

    Article  Google Scholar 

  • Pauli, W. (1958b): Theory of Relativity. Pergamon Press, Oxford.

    Google Scholar 

  • Pauli, W. (1965): Continuous groups in quantum mechanics. Ergebnisse der exakten Naturwissenschaften 37, 85–104.

    Google Scholar 

  • Pauli, W. (1990): Die allgemeinen Prinzipien der Wellenmechanik. Springer, Berlin. Newly edited and annotated by Norbert Strauman.

    Google Scholar 

  • Pauli, W. (2000a): Pauli Lectures on Physics. Volume 6. Selected Topics in Field Quantization. Dover, New York.

    Google Scholar 

  • Pauli, W. (2000b): Relativitätstheorie. Springer, Berlin. Reprint of the original “Encyclopädie-Artikel” from 1921 with various additions, including Pauli’s own supplementary notes of 1956. Edited and annotated by Domenico Giulini.

    Google Scholar 

  • Pfister, H. (2004): Newton’s first law revisited. Foundations of Physics Letters 17, 49–64.

    Article  Google Scholar 

  • Pursey, D. (1957): Invariance properties of Fermi interactions. Nuovo Cimento 6, 266–277.

    Article  Google Scholar 

  • Serpe, J. (1952): Sur la th´orie abr´g´e des particules de spin ½. Physica 18, 295–306.

    Article  Google Scholar 

  • Serpe, J. (1957): Remarks on parity conservation and the two-component theory of the neutrino. Nuclear Physics 4, 183–187.

    Article  Google Scholar 

  • Sexl, R.U. and Urbantke, H.K. (2001): Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics. Springer, Wien.

    Google Scholar 

  • Sorkin, R. (1983): Kaluza-Klein monopole. Physical Review Letters 51, 87–90.

    Article  Google Scholar 

  • Straumann, N. (1992): Von der Stech-Jensen-Transformation zur universellen V-A-Wechselwirkung. Archive for History of Exact Sciences 44, 365–386.

    Article  Google Scholar 

  • Straumann, N. (2004): The role of the exclusion principle for atoms to stars: A historical account. Online available at arxiv.org/pdf/0403/0403199.

    Google Scholar 

  • Weinberg, S. (1995): The Quantum Theory of Fields. Volume I Foundations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Weyl, H. (1928): Gruppentheorie und Quantenmechanik. Hirzel, Leipzig.

    Google Scholar 

  • Weyl, H. (1991): Raum Zeit Materie. Springer, Berlin. Based on the fifth edition (1923), with additional appendices, edited and annotated by Jürgen Ehlers.

    Google Scholar 

  • Wigner, E. (1931): Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Vieweg, Braunschweig.

    Google Scholar 

  • Zeeman, E.C. (1964): Causality implies the Lorentz group. Journal of Mathematical Physics 5, 490–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giulini, D. (2009). Concepts of Symmetry in the Work of Wolfgang Pauli. In: Atmanspacher, H., Primas, H. (eds) Recasting Reality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85198-1_3

Download citation

Publish with us

Policies and ethics