Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2711))

Abstract

We introduce a set of transformations on the set of all probability distributions over a finite state space, and show that these transformations are the only ones that preserve certain elementary probabilistic relationships. This result provides a new perspective on a variety of probabilistic inference problems in which invariance considerations play a role. Two particular applications we consider in this paper are the development of an equivariance-based approach to the problem of measure selection, and a new justification for Haldane’s prior as the distribution that encodes prior ignorance about the parameter of a multinomial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carnap, R.: Logical Foundations of Probability. The University of Chicago Press, Chicago (1950)

    MATH  Google Scholar 

  2. Gabbay, D.: Theoretical foundations for nonmonotonic reasoning in expert systems. In: Apt, K. (ed.) Logics and Models of Cuncurrent Systems. Springer, Berlin (1985)

    Google Scholar 

  3. Hacking, I.: The Emergence of Probability: a Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  4. Haldane, J.B.S.: A note on inverse probability. In: Proceedings of the Cambridge Philosophical Society, vol. 28, pp. 55–61 (1932)

    Google Scholar 

  5. Hartigan, J.: Invariant prior distributions. Annals of Mathematical Statistics 35(2), 836–845 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  6. Holbrook, J., Kim, S.S.: Bertrand’s paradox revisited. The Mathematical Intelligencer, 16–19 (2000)

    Google Scholar 

  7. Jaeger, M.: Minimum cross-entropy reasoning:A statistical justification. In: Mellish, C.S. (ed.) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), Montréal, Canada, pp. 1847–1852. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  8. Jaeger, M.: Constraints as data: A new perspective on inferring probabilities. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 755–760 (2001)

    Google Scholar 

  9. Jaeger, M.: Arepresentation theorem and applications to measure selection and noninformative priors. Technical Report MPI-I-2003-2-002, Max-Planck-Institut für Informatik (2003) (in preparation)

    Google Scholar 

  10. Jaynes, E.T.: Prior probability. IEEE Transactions on Systems Science and Cybernetics 4(3), 227–241 (1968)

    Article  Google Scholar 

  11. Jeffreys, H.: Theory of Probability, 3rd edn. Oxford University Press, Oxford (1961)

    MATH  Google Scholar 

  12. Paris, J.: On filling-in missing information in causal networks. Submitted to Knowledge-based Systems.

    Google Scholar 

  13. Paris, J.: Common sense and maximum entropy. Synthese 117, 75–93 (1999)

    Article  MathSciNet  Google Scholar 

  14. Paris, J.B.: The Uncertain Reasoner’s Companion. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  15. Paris, J.B., Vencovská, A.: A note on the inevitability of maximum entropy. International Journal of Approximate Reasoning 4, 183–223 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Reichenbach, H.: The Theory of Probability. University of California Press, Los Angeles (1949)

    MATH  Google Scholar 

  17. Schafer, J.L.: Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC (1997)

    Google Scholar 

  18. Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory IT-26(1), 26–37 (1980)

    Article  MathSciNet  Google Scholar 

  19. van Fraassen, B.C.: Laws and Symmetry. Clarendon, Oxford (1989)

    Google Scholar 

  20. Villegas, C.: On the representation of ignorance. Journal of the American Statistical Association 72, 651–654 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaeger, M. (2003). A Representation Theorem and Applications. In: Nielsen, T.D., Zhang, N.L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2003. Lecture Notes in Computer Science(), vol 2711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45062-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45062-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40494-1

  • Online ISBN: 978-3-540-45062-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics