Skip to main content

The Neurobiology of Behavioral Inhibition as a Developmental Mechanism

  • Chapter
  • First Online:
Behavioral Inhibition

Abstract

Humans are social creatures and have variable responses to novel social cues that range from cautious avoidance to eager approach. These trait differences in response to novelty have been defined as behavioral inhibition, a temperament that ranges from behaviorally inhibited on one extreme to behaviorally uninhibited at the other. For centuries temperament has been thought to reflect underlying differences in biology. With advances in neuroimaging methods, we now have a unique opportunity to identify the neurobiological basis of behavioral inhibition. In this chapter, we review the evidence that behavioral inhibition is associated with alterations in brain structure, function, and connectivity and present implications for understanding developmental trajectories. The emerging findings point to alterations in “bottom-up” mechanisms—heightened reactivity to novelty and failure to habituate—and “top-down” processes, failure of cognitive control and maladaptive anticipatory processing.

We propose that the bottom-up mechanisms, which are present very early in childhood, contribute to the earliest observations of behavioral inhibition in children and shape early developmental trajectories. In contrast, the top-down mechanisms emerge in early adolescence as the prefrontal cortex begins rapid maturation. Developmental trajectories of behaviorally inhibited children likely diverge in adolescence based on prefrontal cortex development. Adolescents with early maturation or robust prefrontal cortical function will move toward a trajectory of normative development, while adolescents with delayed or deficient prefrontal cortical development will maintain their trajectory of extreme inhibition and risk for anxiety. Future research must systematically study behaviorally inhibited children across development to document developmental differences in brain structure, function, and connectivity and to further clarify the role of neurobiological mechanisms in shaping developmental trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, S. L., & Teicher, M. H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31(4), 183–191.

    Article  Google Scholar 

  • Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1(1), 89–99.

    Article  Google Scholar 

  • Asselmann, E., Wittchen, H. U., Lieb, R., Höfler, M., & Beesdo-Baum, K. (2015). The role of behavioral inhibition and parenting for an unfavorable emotional trauma response and PTSD. Acta Psychiatrica Scandinavica, 131(4), 279–289.

    Article  Google Scholar 

  • Aupperle, R. L., Ravindran, L., Tankersley, D., Flagan, T., Stein, N. R., Simmons, A. N., … Paulus, M. P. (2011). Pregabalin influences insula and amygdala activation during anticipation of emotional images. Neuropsychopharmacology, 36(7), 1466–1477.

    Article  Google Scholar 

  • Avery, S. N. (2015). Slow to warm up: The role of habituation in social fear. Nashville, TN: Vanderbilt University.

    Google Scholar 

  • Avery, S. N., & Blackford, J. U. (2016). Slow to warm up: The role of habituation in social fear. Social Cognitive and Affective Neuroscience, 11(11), 1832–1840.

    Article  Google Scholar 

  • Bas-Hoogendam, J. M., Blackford, J. U., Brühl, A. B., Blair, K. S., van der Wee, N. J. A., & Westenberg, P. M. (2016). Neurobiological candidate endophenotypes of social anxiety disorder. Neuroscience and Biobehavioral Reviews, 71, 362–378.

    Article  Google Scholar 

  • Beesdo, K., Bittner, A., Pine, D. S., Stein, M. B., Hofler, M., Lieb, R., & Wittchen, H.-U. (2007). Incidence of social anxiety disorder and the consistent risk for secondary depression in the first three decades of life. Archives of General Psychiatry, 64(8), 903–912.

    Article  Google Scholar 

  • Biro, P. A., Post, J. R. (2008). Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2919–2922.

    Article  Google Scholar 

  • Biederman, J., Hirshfeld-Becker, D. R., Rosenbaum, J. F., Herot, C., Friedman, D., Snidman, N., … Faraone, S. V. (2001). Further evidence of association between behavioral inhibition and social anxiety in children. American Journal of Psychiatry, 158(10), 1673–1679.

    Article  Google Scholar 

  • Biederman, J., Rosenbaum, J. F., Bolducmurphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., & Kagan, J. (1993). A 3-year follow-up of children with and without behavioral-inhibition. Journal of the American Academy of Child and Adolescent Psychiatry, 32(4), 814–821.

    Article  Google Scholar 

  • Blackford, J. U., Allen, A. H., Cowan, R. L., & Avery, S. N. (2013). Amygdala and hippocampus fail to habituate to faces in individuals with an inhibited temperament. Social Cognitive and Affective Neuroscience, 8(2), 143–150.

    Article  Google Scholar 

  • Blackford, J. U., Avery, S. N., Cowan, R. L., Shelton, R. C., & Zald, D. H. (2011). Sustained amygdala response to both novel and newly familiar faces characterizes inhibited temperament. Social Cognitive and Affective Neuroscience, 6(5), 621–629.

    Article  Google Scholar 

  • Blackford, J. U., Avery, S. N., Shelton, R. C., & Zald, D. H. (2009). Amygdala temporal dynamics: Temperamental differences in the timing of amygdala response to familiar and novel faces. BMC Neuroscience, 10, 145.

    Article  Google Scholar 

  • Blackford, J. U., Buckholtz, J. W., Avery, S. N., & Zald, D. H. (2010). A unique role for the amygdala in novelty detection. NeuroImage, 50(3), 1188–1193.

    Article  Google Scholar 

  • Blackford, J. U., Clauss, J. A., Avery, S. N., Cowan, R. L., Benningfield, M. M., & Vanderklok, R. M. (2014). Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition. Biological Psychology, 99, 15–25.

    Article  Google Scholar 

  • Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., … Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17(5), 875–887.

    Article  Google Scholar 

  • Brühl, A. B., Delsignore, A., Komossa, K., & Weidt, S. (2014). Neuroimaging in social anxiety disorder–a meta-analytic review resulting in a new neurofunctional model. Neuroscience & Biobehavioral Reviews, 47, 260–280.

    Article  Google Scholar 

  • Buckner, J. D., Schmidt, N. B., Lang, A. R., Small, J. W., Schlauch, R. C., & Lewinsohn, P. M. (2008). Specificity of social anxiety disorder as a risk factor for alcohol and cannabis dependence. Journal of Psychiatric Research, 42(3), 230–239.

    Article  Google Scholar 

  • Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990.

    Article  Google Scholar 

  • Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33(2), 301–311.

    Article  Google Scholar 

  • Bushnell, I. W. R. (1982). Discrimination of faces by young infants. Journal of Experimental Child Psychology, 33(2), 298–308.

    Article  Google Scholar 

  • Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54(1–3), 241–257.

    Article  Google Scholar 

  • Casey, B. J., Pattwell, S. S., Glatt, C. E., & Lee, F. S. (2013). Treating the developing brain: Implications from human imaging and mouse genetics. Annual Review of Medicine, 64, 427–439.

    Article  Google Scholar 

  • Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders. Longitudinal evidence from a birth cohort. Archives of General Psychiatry, 53(11), 1033–1039.

    Article  Google Scholar 

  • Chronis-Tuscano, A., Degnan, K. A., Pine, D. S., Pérez-Edgar, K., Henderson, H. A., Diaz, Y., … Fox, N. A. (2009). Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 48(9), 928–935.

    Article  Google Scholar 

  • Clauss, J. A., Avery, S. N., & Blackford, J. U. (2015). The nature of individual differences in inhibited temperament and risk for psychiatric disease: A review and meta-analysis. Progress in Neurobiology, 127-128, 23–45.

    Article  Google Scholar 

  • Clauss, J. A., Avery, S. N., VanDerKlok, R., Cowan, R. L., Benningfield, M. M., & Blackford, J. U. (2014). Neurocircuitry underlying risk and resilience to social anxiety disorder. Depression and Anxiety, 31, 822–833.

    Article  Google Scholar 

  • Clauss, J. A., Benningfield, M. M., Rao, U., & Blackford, J. U. (2016). Altered prefrontal cortex function marks heightened anxiety risk in children. Journal of the American Academy of Child & Adolescent Psychiatry, 55, 809–816.

    Article  Google Scholar 

  • Clauss, J. A., & Blackford, J. U. (2012). Behavioral inhibition and risk for developing social anxiety disorder: A meta-analytic study. Journal of the American Academy of Child and Adolescent Psychiatry, 51(10), 1066–1075.

    Article  Google Scholar 

  • Clauss, J. A., Cowan, R. L., & Blackford, J. U. (2011). Expectation and temperament moderate amygdala and dorsal anterior cingulate cortex responses to fear faces. Cognitive, Affective, & Behavioral Neuroscience, 11(1), 13–21.

    Article  Google Scholar 

  • Clauss, J. A., Seay, A. L., Vanderklok, R., Avery, S., Cao, A., Cowan, R. L., … Blackford, J. U. (2014). Structural and functional bases of inhibited temperament. Social Cognitive and Affective Neuroscience, 9(12), 2049–2058.

    Article  Google Scholar 

  • Cook, S. C., & Wellman, C. L. (2004). Chronic stress alters dendritic morphology in rat medial prefrontal cortex. Journal of Neurobiology, 60(2), 236–248.

    Article  Google Scholar 

  • Davidson, R. J., Lewis, D. A., Alloy, L. B., Amaral, D. G., Bush, G., Cohen, J. D., … Peterson, B. S. (2002). Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 52(6), 478–502.

    Article  Google Scholar 

  • Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.

    Article  Google Scholar 

  • Debiec, J., & Sullivan, R. M. (2017). The neurobiology of safety and threat learning in infancy. Neurobiology of Learning and Memory, 143, 49–58.

    Article  Google Scholar 

  • Dilalla, L. F., Kagan, J., & Reznick, J. S. (1994). Genetic etiology of behavioral inhibition among 2-year-old children. Infant Behavior & Development, 17(4), 405–412.

    Article  Google Scholar 

  • Emde, R. N., Plomin, R., Robinson, J. A., Corley, R., DeFries, J., Fulker, D. W., … Zahn-Waxler, C. (1992). Temperament, emotion, and cognition at fourteen months: The MacArthur Longitudinal Twin Study. Child Development, 63(6), 1437–1455.

    Article  Google Scholar 

  • Ernst, M., Fudge, J. L. (2009). A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience and Biobehavioral Reviews, 33(3), 367–382.

    Article  Google Scholar 

  • Essex, M. J., Klein, M. H., Slattery, M. J., Goldsmith, H. H. H., & Kalin, N. H. (2010). Early risk factors and developmental pathways to chronic high inhibition and social anxiety disorder in adolescence. American Journal of Psychiatry, 167(1), 40–46.

    Article  Google Scholar 

  • Frick, A., Howner, K., Fischer, H., Eskildsen, S. F., Kristiansson, M., & Furmark, T. (2013). Cortical thickness alterations in social anxiety disorder. Neuroscience Letters, 536, 52–55.

    Article  Google Scholar 

  • Fried, I., MacDonald, K. A., & Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron, 18(5), 753–765.

    Article  Google Scholar 

  • Fu, X., Taber-Thomas, B. C., & Pérez-Edgar, K. (2015). Frontolimbic functioning during threat-related attention: Relations to early behavioral inhibition and anxiety in children. Biological Psychology, 122, 98–109.

    Article  Google Scholar 

  • García Coll, C., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55(3), 1005–1019.

    Article  Google Scholar 

  • Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. The Journal of Neuroscience, 33(10), 4584–4593.

    Article  Google Scholar 

  • Ghashghaei, H., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905–923.

    Article  Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.

    Article  Google Scholar 

  • Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? Psychological Bulletin, 127(1), 45–86.

    Article  Google Scholar 

  • Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501.

    Article  Google Scholar 

  • Gullone, E. (2000). The development of normal fear: A century of research. Clinical Psychology Review, 20(4), 429–451.

    Article  Google Scholar 

  • Hill, S. Y., Tessner, K., Wang, S., Carter, H., & Mcdermott, M. (2010). Temperament at 5-years of age predicts amygdala and orbitofrontal volume in the right hemisphere in adolescence. Psychiatry Research: Neuroimaging, 182(1), 14–21.

    Article  Google Scholar 

  • Hirshfeld, D. R., Rosenbaum, J. F., Biederman, J., Bolduc, E. A., Faraone, S. V., Snidman, N., … Kagan, J. (1992). Stable behavioral-inhibition and its association with anxiety disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 31(1), 103–111.

    Article  Google Scholar 

  • Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517–527.

    Article  Google Scholar 

  • Jarcho, J. M., Fox, N. A., Pine, D. S., Etkin, A., Leibenluft, E., Shechner, T., & Ernst, M. (2013). The neural correlates of emotion-based cognitive control in adults with early childhood behavioral inhibition. Biological Psychology, 92(2), 306–314.

    Article  Google Scholar 

  • Jarcho, J. M., Fox, N. A., Pine, D. S., Leibenluft, E., Shechner, T., Degnan, K. A., … Ernst, M. (2014). Enduring influence of early temperament on neural mechanisms mediating attention-emotion conflict in adults. Depression and Anxiety, 31(1), 53–62.

    Article  Google Scholar 

  • Kaffman, A., & Meaney, M. J. (2007). Neurodevelopmental sequelae of postnatal maternal care in rodents: Clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48(3–4), 224–244.

    Article  Google Scholar 

  • Kagan, J., Reznick, J. S., & Snidman, N. (1998). Biological bases of childhood shyness. Science, 240(4849), 167–171.

    Article  Google Scholar 

  • Kagan, J., Reznick, J. S., Snidman, N., Gibbons, J., & Johnson, M. O. (1988). Childhood derivatives of inhibition and lack of inhibition to the unfamiliar. Child Development, 59(6), 1580–1589.

    Article  Google Scholar 

  • Kagan, J., & Snidman, N. (2004). The long shadow of temperament. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kagan, J., Snidman, N., & Arcus, D. (1998). Childhood derivatives of high and low reactivity in infancy. Child Development, 69(6), 1483–1493.

    Article  Google Scholar 

  • Kalin, N. H., Shelton, S. E., & Davidson, R. J. (2004). The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. Journal of Neuroscience, 24(24), 5506–5515.

    Article  Google Scholar 

  • Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 593–602.

    Article  Google Scholar 

  • Klumpp, H., Fitzgerald, D. A., & Phan, K. L. (2013). Neural predictors and mechanisms of cognitive behavioral therapy on threat processing in social anxiety disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 45, 83–91.

    Article  Google Scholar 

  • Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences, 109(Supplement_2), 17186–17193.

    Article  Google Scholar 

  • McDermott, J. M., Pérez-Edgar, K., Henderson, H. A., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2009). A history of childhood behavioral inhibition and enhanced response monitoring in adolescence are linked to clinical anxiety. Biological Psychiatry, 65(5), 445–448.

    Article  Google Scholar 

  • McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 16–29.

    Article  Google Scholar 

  • Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., & Koenigs, M. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77(3), 276–284.

    Article  Google Scholar 

  • Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature reviews. Neuroscience, 7(9), 697–709.

    PubMed  Google Scholar 

  • Pitskel, N. B., Bolling, D. Z., Kaiser, M. D., Crowley, M. J., & Pelphrey, K. a. (2011). How grossed out are you? The neural bases of emotion regulation from childhood to adolescence. Developmental Cognitive Neuroscience, 1(3), 324–337.

    Article  Google Scholar 

  • Plichta, M. M., Grimm, O., Morgen, K., Mier, D., Sauer, C., Haddad, L., … Meyer-Lindenberg, A. (2014). Amygdala habituation: A reliable fMRI phenotype. NeuroImage, 103, 383–390.

    Article  Google Scholar 

  • Plomin, R., & Daniels, D. (1986). Genetics and shyness. In W. H. Jones, J. M. Cheek, & S. R. Briggs (Eds.), Shyness: Perspectives on research and treatment (pp. 63–80). New York, NY: Plenum.

    Chapter  Google Scholar 

  • Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309–322.

    Article  Google Scholar 

  • Qiu, A., Anh, T. T., Li, Y., Chen, H., Rifkin-Graboi, A., Broekman, B. F. P., … Meaney, M. J. (2015). Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Translational Psychiatry, 5(2), e508.

    Article  Google Scholar 

  • Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., … Thompson, R. F. (2009). Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 92(2), 135–138.

    Article  Google Scholar 

  • Reeb-Sutherland, B. C. (2009). Startle response in behaviorally inhibited adolescents with a lifetime occurrence of anxiety disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 48(6), 610–617.

    Article  Google Scholar 

  • Robinson, J. L., Reznick, J. S., Kagan, J., & Corley, R. (1992). The heritability of inhibited and uninhibited behavior: A twin study. Developmental Psychology, 28(6), 1030–1037.

    Article  Google Scholar 

  • Roy, A. K., Benson, B. E., Degnan, K. A., Pérez-Edgar, K., Pine, D. S., Fox, N. A., & Ernst, M. (2014). Alterations in amygdala functional connectivity reflect early temperament. Biological Psychology, 103, 248–254.

    Article  Google Scholar 

  • Rutishauser, U., Mamelak, A. N., & Schuman, E. M. (2006). Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron, 49(6), 805–813.

    Article  Google Scholar 

  • Scarr, S., & Salapatek, P. (1970). Patterns of fear development during infancy. Merrill-Palmer Quarterly, 16(1), 53–90.

    Google Scholar 

  • Schuyler, B. S., Kral, T. R. A., Jacquart, J., Burghy, C. A., Weng, H. Y., Perlman, D. M., … Davidson, R. J. (2014). Temporal dynamics of emotional responding: Amygdala recovery predicts emotional traits. Social Cognitive and Affective Neuroscience, 9(2), 176–181.

    Article  Google Scholar 

  • Schwartz, C. E., Kunwar, P. S., Greve, D. N., Kagan, J., Snidman, N. C., & Bloch, R. B. (2012). A phenotype of early infancy predicts reactivity of the amygdala in male adults. Molecular Psychiatry, 17(10), 1042–1050.

    Article  Google Scholar 

  • Schwartz, C. E., Kunwar, P. S., Greve, D. N., Moran, L. R., Viner, J. C., Covino, J. M., … Wallace, S. R. (2010). Structural differences in adult orbital and ventromedial prefrontal cortex predicted by infant temperament at 4 months of age. Archives of General Psychiatry, 67(1), 78–84.

    Article  Google Scholar 

  • Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Adolescent social anxiety as an outcome of inhibited temperament in childhood. Journal of the American Academy of Child and Adolescent Psychiatry, 38(8), 1008–1015.

    Article  Google Scholar 

  • Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science, 300(5627), 1952–1953.

    Article  Google Scholar 

  • Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., Whalen, P. J., McMullin, K. G., & Rauch, S. L. (2003). Differential amygdalar response to novel versus newly familiar neutral faces: A functional MRI probe developed for studying inhibited temperament. Biological Psychiatry, 53(10), 854–862.

    Article  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.

    Article  Google Scholar 

  • Strange, B. A., Fletcher, P. C., Henson, R. N. A., Friston, K. J., Dolan, R. J., Square, Q., … Street, R. H. (1999). Segregating the functions of human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 4034–4039.

    Article  Google Scholar 

  • Suomi, S. J. (1997). Early determinants of behaviour: Evidence from primate studies. British Medical Bulletin, 53(1), 170–184.

    Article  Google Scholar 

  • Sylvester, C. M., Barch, D. M., Harms, M. P., Belden, A. C., Oakberg, T. J., Gold, A. L., … Pine, D. S. (2015). Early childhood behavioral inhibition predicts cortical thickness in adulthood. Journal of the American Academy of Child & Adolescent Psychiatry, 55(2), 122.e1–129.e1.

    Google Scholar 

  • Taber-Thomas, B. C., Morales, S., Hillary, F. G., & Pérez-Edgar, K. E. (2016). Altered topography of intrinsic functional connectivity in childhood risk for social anxiety. Depression and Anxiety, 33(11), 995–1004.

    Article  Google Scholar 

  • Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73(1), 16–43.

    Article  Google Scholar 

  • Turk-Browne, N. B., Scholl, B. J., & Chun, M. M. (2008). Babies and brains: Habituation in infant cognition and functional neuroimaging. Frontiers in Human Neuroscience, 2, 16.

    PubMed  PubMed Central  Google Scholar 

  • Walker, D. L., & Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. The Journal of Neuroscience, 17(23), 9375–9383.

    Article  Google Scholar 

  • White, L. K., McDermott, J. M., Degnan, K. A., Henderson, H. A., & Fox, N. A. (2011). Behavioral inhibition and anxiety: The moderating roles of inhibitory control and attention shifting. Journal of Abnormal Child Psychology, 39(5), 735–747.

    Article  Google Scholar 

  • Williams, L. R., Degnan, K. A., Pérez-Edgar, K., Henderson, H. A., Rubin, K. H., Pine, D. S., … Fox, N. A. (2009). Impact of behavioral inhibition and parenting style on internalizing and externalizing problems from early childhood through adolescence. Journal of Abnormal Child Psychology, 37(8), 1063–1075.

    Article  Google Scholar 

  • Wilson, F. A., & Rolls, E. T. (1993). The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Experimental Brain Research, 93(3), 367–382.

    Article  Google Scholar 

  • Wittchen, H. U., Fröhlich, C., Behrendt, S., Günther, A., Rehm, J., Zimmermann, P., … Perkonigg, A. (2007). Cannabis use and cannabis use disorders and their relationship to mental disorders: A 10-year prospective-longitudinal community study in adolescents. Drug and Alcohol Dependence, 88(Suppl. 1), 60–70.

    Article  Google Scholar 

  • Woodward, L. J., & Fergusson, D. M. (2001). Life course outcomes of young people with anxiety disorders in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 40(9), 1086–1093.

    Article  Google Scholar 

  • Wright, C. I., Fischer, H., Whalen, P. J., McInerney, S., Shin, L. M., & Rauch, S. L. (2001). Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport, 12(2), 379–383.

    Article  Google Scholar 

  • Yamaguchi, S., Hale, L. A., D’Esposito, M., & Knight, R. T. (2004). Rapid prefrontal-hippocampal habituation to novel events. Journal of Neuroscience, 24(23), 5356–5363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Urbano Blackford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blackford, J.U., Clauss, J.A., Benningfield, M.M. (2018). The Neurobiology of Behavioral Inhibition as a Developmental Mechanism. In: Pérez-Edgar, K., Fox, N. (eds) Behavioral Inhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-98077-5_6

Download citation

Publish with us

Policies and ethics