Skip to main content

Benchmarking Heart Rate Variability to Overcome Sex-Related Bias

  • Chapter
  • First Online:
Sex-Specific Analysis of Cardiovascular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1065))

Abstract

Since the seminal studies by Sayers (Ergonomics 16:17–32, 1973) and Akselrod et al. (Science 213:220–222, 1981) a few decades ago, it became clear that beat-by-beat oscillations in RR interval length (i.e. heart-rate variability [HRV]) contain information on underlying neural-control mechanisms based on the instantaneous balance between parasympathetic and sympathetic innervation. Over the years, the number of studies addressing HRV has increased markedly and now outnumbers 23,000. Despite such a large interest, there is still a continuing debate about interpretation of indices produced by computer analysis of HRV.

The main part of studies relies on spectral techniques to extract parameters that are linked to hidden information. The general idea is that these proxies of autonomic regulation can be useful to clinical applications in various conditions in which autonomic dysregulation may play a role. There are, however, serious shortcomings related to algorithms, interpretation, and the hidden value of individual indices. In particular, it appears that specific training is necessary to interpret the hidden informational value of HRV. This technical complexity represents a severe barrier to large-scale clinical applications. Moreover, important differences in HRV separate the sexes, and age plays an additional confounding role.

We present here a preliminary application of a novel unitary index of RR variability (Autonomic Nervous System Index of cardiac regulation) capable of providing information on the performance of autonomic regulation using a percentile rank position as projected on a large benchmark population. A summary of the underlying sympatho-vagal model is also presented.

Heart rate variability. Illustration by Piet Michiels, Leuven, Belgium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sacks O. The man who mistook his wife for a hat. New York: Summit Books; 1985.

    Google Scholar 

  2. Editorial. The soft science of medicine. Lancet. 2004;363(9417):1247.

    Article  Google Scholar 

  3. Hess WR. Nobel Lecture: The Central Control of the Activity of “Internal Organs”. Nobelprize.org.Nobel Media AB 2014. Web. 2016. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1949/hess-lecture.html

  4. Langley JN. The autonomic nervous system (Pt. I). Cambridge: W. Heffer & Sons; 1921.

    Google Scholar 

  5. Burke RE. Sir Charles Sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain. 2007;130(4):887–94.

    Article  PubMed  Google Scholar 

  6. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.

    Article  CAS  PubMed  Google Scholar 

  7. Warner HR, Russell RO Jr. Effect of combined sympathetic and vagal stimulation on heart rate in the dog. Circ Res. 1969;24:567–73.

    Article  CAS  PubMed  Google Scholar 

  8. Sayers BM. Analysis of heart rate variability. Ergonomics. 1973;16(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  9. Haken H. Synergetics: an introduction. Berlin: Springer Verlag; 1983.

    Book  Google Scholar 

  10. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2.

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz PJ, Pagani M, Lombardi F, Malliani A, Brown AM. A cardiocardiac sympathovagal reflex in the cat. Circ Res. 1973;32(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  12. Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178–93.

    Article  CAS  PubMed  Google Scholar 

  13. Pagani M, Malliani A. Interpreting oscillations of muscle sympathetic nerve activity and heart rate variability. J Hypertens. 2000;18(s):1709–19.

    Article  CAS  PubMed  Google Scholar 

  14. Mochizuki Y, Shinomoto S. Analog and digital codes in the brain. Phys Rev E. 2014;89(2):022705.

    Article  CAS  Google Scholar 

  15. Porta A, Guzzetti S, Montano N, et al. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng. 2001;48(11):1282–91.

    Article  CAS  PubMed  Google Scholar 

  16. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart-rate variability: standards of measurements, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–65.

    Article  Google Scholar 

  17. Pagani M, Montano N, Porta A, et al. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation. 1997;95(6):1441–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw Hill; 2000.

    Google Scholar 

  19. Massimini M, Porta A, Mariotti M, Malliani A, Montano N. Heart rate variability is encoded in the spontaneous discharge of thalamic somatosensory neurones in cat. J Physiol. 2000;526:387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voss A, Schroeder R, Heitmann A, Peters A, Perz S. Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS One. 2015;10(3):e0118308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135(24):2426–41.

    Article  CAS  PubMed  Google Scholar 

  23. Sala R, Malacarne M, Solaro N, Pagani M, Lucini D. A composite autonomic index as unitary metric for heart rate variability: a proof of concept. Eur J Clin Investig. 2017;47(3):241–9.

    Article  Google Scholar 

  24. Pomeranz B, Macaulay RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Phys. 1985;248(1 Pt 2):H151–3.

    CAS  Google Scholar 

  25. Lucini D, Marchetti I, Spataro A, et al. Heart rate variability to monitor performance in elite athletes: criticalities and avoidable pitfalls. Int J Cardiol. 2017;240:307–12.

    Article  PubMed  Google Scholar 

  26. Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33(25):10503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Badilini F, Pagani M, Porta A. Heartscope: a software tool addressing autonomic nervous system regulation. Comput Cardiol. 2005;32:259–62.

    Google Scholar 

  28. Saary MJ. Radar plots: a useful way for presenting multivariate health care data. J Clin Epidemiol. 2008;61(4):311–7.

    Article  PubMed  Google Scholar 

  29. Sala R, Spataro A, Malacarne M, et al. Discriminating between two autonomic profiles related to posture in Olympic athletes. Eur J Appl Physiol. 2016;116(4):815–22.

    Article  PubMed  Google Scholar 

  30. Engel BT. Psychosomatic medicine, behavioral medicine, just plain medicine. Psychosom Med. 1986;48(7):466–79.

    Article  CAS  PubMed  Google Scholar 

  31. Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96(9):3224–32.

    Article  CAS  PubMed  Google Scholar 

  32. Lucini D, Solaro N, Pagani M. Autonomic differentiation map: a novel statistical tool for interpretation of Heart Rate Variability. Frontiers Physiol. 2018;9:401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagani, M., Sala, R., Malacarne, M., Lucini, D. (2018). Benchmarking Heart Rate Variability to Overcome Sex-Related Bias. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_13

Download citation

Publish with us

Policies and ethics