Skip to main content

Cardiotoxicity During and After Breast Cancer Treatment

  • Chapter
  • First Online:
Manual of Gynecardiology

Abstract

As cardiovascular diseases (CVD) are the main cause of death in women worldwide, they are also frequently present in breast cancer (BC) patients and in late survivors. Radiation therapy, chemotherapy, immunotherapy and angiogenic therapy may induce cardiotoxicity and vascular damage. In the rapidly evolving field of cardio-oncology it is recommended that pre-existing CVD risk factors should be assessed in all BC patients and aggressively managed, starting at the time of treatment (or even before) and continuing throughout survivorship. The use of advanced cardiac imaging techniques improves earlier detection of cardiac damage and heart failure, enabling a more timely treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barac A, et al. Cardiovascular health of patients with cancer and cancer survivors: a roadmap to the next level. J Am Coll Cardiol. 2015;65(25):2739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.

    Article  CAS  PubMed  Google Scholar 

  3. Bardia A, et al. Comparison of breast cancer recurrence risk and cardiovascular disease incidence risk among postmenopausal women with breast cancer. Breast Cancer Res Treat. 2012;131(3):907–14.

    Article  PubMed  Google Scholar 

  4. Calle EE, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    Article  PubMed  Google Scholar 

  5. Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121(4):856–62.

    Article  CAS  PubMed  Google Scholar 

  6. Xue F, Michels KB. Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr. 2007;86(3):s823–35.

    PubMed  Google Scholar 

  7. Hooning MJ, et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst. 2007;99(5):365–75.

    Article  PubMed  Google Scholar 

  8. Jones LW, et al. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50(15):1435–41.

    Article  PubMed  Google Scholar 

  9. Lal H, Kolaja KL, Force T. Cancer genetics and the cardiotoxicity of the therapeutics. J Am Coll Cardiol. 2013;61(3):267–74.

    Article  CAS  PubMed  Google Scholar 

  10. Pavo N, et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015;101(23):1874–80.

    Article  CAS  PubMed  Google Scholar 

  11. Maas AH, et al. Cardiovascular surveillance in breast cancer treatment: a more individualized approach is needed. Maturitas. 2016;89:58–62.

    Article  PubMed  Google Scholar 

  12. Zamorano JL, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for practice guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    Article  PubMed  Google Scholar 

  13. Antoniou A, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arts-de Jong M, et al. BRCA1/2 mutation carriers are potentially at higher cardiovascular risk. Crit Rev Oncol Hematol. 2014;91(2):159–71.

    Article  CAS  PubMed  Google Scholar 

  15. Mai PL, et al. Potential excess mortality in BRCA1/2 mutation carriers beyond breast, ovarian, prostate, and pancreatic cancers, and melanoma. PLoS One. 2009;4(3):e4812.

    Article  PubMed  PubMed Central  Google Scholar 

  16. van Westerop LL, et al. Cardiovascular risk of BRCA1/2 mutation carriers: a review. Maturitas. 2016;91:135–9.

    Article  PubMed  Google Scholar 

  17. Singh KK, et al. BRCA2 protein deficiency exaggerates doxorubicin-induced cardiomyocyte apoptosis and cardiac failure. J Biol Chem. 2012;287(9):6604–14.

    Article  CAS  PubMed  Google Scholar 

  18. Barac A, et al. Cardiac function in BRCA1/2 mutation carriers with history of breast cancer treated with anthracyclines. Breast Cancer Res Treat. 2016;155(2):285–93.

    Article  CAS  PubMed  Google Scholar 

  19. Bouillon K, et al. Long-term cardiovascular mortality after radiotherapy for breast cancer. J Am Coll Cardiol. 2011;57(4):445–52.

    Article  PubMed  Google Scholar 

  20. Nilsson G, et al. Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol. 2012;30(4):380–6.

    Article  PubMed  Google Scholar 

  21. Darby SC, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

    Article  CAS  PubMed  Google Scholar 

  22. Swanson T, et al. Six-year experience routinely using moderate deep inspiration breath-hold for the reduction of cardiac dose in left-sided breast irradiation for patients with early-stage or locally advanced breast cancer. Am J Clin Oncol. 2013;36(1):24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mast ME, et al. Left-sided breast cancer radiotherapy with and without breath-hold: does IMRT reduce the cardiac dose even further? Radiother Oncol. 2013;108(2):248–53.

    Article  PubMed  Google Scholar 

  24. Essers M, et al. Should breathing adapted radiotherapy also be applied for right-sided breast irradiation? Acta Oncol. 2016;55(4):460–5.

    Article  PubMed  Google Scholar 

  25. Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013;34(15):1102–11.

    Article  CAS  PubMed  Google Scholar 

  26. Lenneman CG, Sawyer DB. Cardio-oncology: an update on cardiotoxicity of cancer-related treatment. Circ Res. 2016;118(6):1008–20.

    Article  CAS  PubMed  Google Scholar 

  27. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 2007;49(5):330–52.

    Article  CAS  PubMed  Google Scholar 

  28. Cardinale D, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, et al. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60(24):2504–12.

    Article  CAS  PubMed  Google Scholar 

  30. Procter M, et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin Adjuvant (HERA) trial. J Clin Oncol. 2010;28(21):3422–8.

    Article  PubMed  Google Scholar 

  31. Farolfi A, et al. Trastuzumab-induced cardiotoxicity in early breast cancer patients: a retrospective study of possible risk and protective factors. Heart. 2013;99(9):634–9.

    Article  CAS  PubMed  Google Scholar 

  32. Slamon D, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Romond EH, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    Article  CAS  PubMed  Google Scholar 

  34. Suter TM, et al. Trastuzumab-associated cardiac adverse effects in the Herceptin Adjuvant trial. J Clin Oncol. 2007;25(25):3859–65.

    Article  CAS  PubMed  Google Scholar 

  35. Swain SM, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34.

    Article  CAS  PubMed  Google Scholar 

  36. Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009;6(8):465–77.

    Article  CAS  PubMed  Google Scholar 

  37. Li W, et al. Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. J Am Coll Cardiol. 2015;66(10):1160–78.

    Article  PubMed  Google Scholar 

  38. Cameron D, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14(10):933–42.

    Article  CAS  PubMed  Google Scholar 

  39. Bonanni B, et al. Effect of tamoxifen at low doses on ultrasensitive C-reactive protein in healthy women. J Thromb Haemost. 2003;1(10):2149–52.

    Article  CAS  PubMed  Google Scholar 

  40. Pinkerton JV, Thomas S. Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol Biol. 2014;142:142–54.

    Article  CAS  PubMed  Google Scholar 

  41. Davies C, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ryden L, et al. Aromatase inhibitors alone or sequentially combined with tamoxifen in postmenopausal early breast cancer compared with tamoxifen or placebo – meta-analyses on efficacy and adverse events based on randomized clinical trials. Breast. 2016;26:106–14.

    Article  PubMed  Google Scholar 

  43. Amir E, et al. Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis. J Natl Cancer Inst. 2011;103(17):1299–309.

    Article  CAS  PubMed  Google Scholar 

  44. Chlebowski RT, et al. Benefit/risk for adjuvant breast cancer therapy with tamoxifen or aromatase inhibitor use by age, and race/ethnicity. Breast Cancer Res Treat. 2015;154(3):609–16.

    Article  CAS  PubMed  Google Scholar 

  45. Lintermans A, Neven P. Safety of aromatase inhibitor therapy in breast cancer. Expert Opin Drug Saf. 2015;14(8):1201–11.

    Article  CAS  PubMed  Google Scholar 

  46. Kerkhove D, et al. How to monitor cardiac toxicity of chemotherapy: time is muscle! Heart. 2014;100(15):1208–17.

    Article  CAS  PubMed  Google Scholar 

  47. Thavendiranathan P, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84.

    Article  PubMed  Google Scholar 

  48. Walker J, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28(21):3429–36.

    Article  PubMed  Google Scholar 

  49. Plana JC, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Curigliano G, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66.

    Article  PubMed  Google Scholar 

  51. Gulati G, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Seicean S, et al. Cardioprotective effect of beta-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail. 2013;6(3):420–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela H. E. M. Maas M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Maas, A.H.E.M. (2017). Cardiotoxicity During and After Breast Cancer Treatment. In: Maas, A., Bairey Merz, C. (eds) Manual of Gynecardiology. Springer, Cham. https://doi.org/10.1007/978-3-319-54960-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54960-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54959-0

  • Online ISBN: 978-3-319-54960-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics