Skip to main content

Causes of Severe Obesity: Genes to Environment

  • Chapter
  • First Online:
Psychiatric Care in Severe Obesity

Abstract

Obesity is a growing public health concern, both in the developed and developing world. It is associated with a number of complications including type 2 diabetes, dyslipidemia, hypertension, cardiovascular disease, nonalcoholic fatty liver disease, obstructive sleep apnea, and malignancy [1]. This causes considerable morbidity and increased mortality. Further, lifestyle changes such as diet and exercise and/or treatment with medications do not usually result in sustained weight loss [2, 3]. Bariatric surgery is the only treatment that results in sustained weight loss with resolution/improvement in obesity-associated complications [4]. Understanding the regulation of food intake and energy expenditure and ultimately body weight regulation is therefore of paramount importance and may ultimately need to better treatments of obesity and its complications. In this chapter, we will review the regulation of food intake and energy expenditure by genetic and environmental factors and how this pertains to the etiology of severe obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malnick SD, Knobler H. The medical complications of obesity. QJM. 2006;99:565–79.

    Article  CAS  PubMed  Google Scholar 

  2. Douketis JD, Macie C, Thabane L, Williamson DF. Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice. Int J Obes (Lond). 2005;29:1153–67.

    Article  CAS  Google Scholar 

  3. Look ARG, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    Article  CAS  Google Scholar 

  4. Puzziferri N, Roshek 3rd TB, Mayo HG, Gallagher R, Belle SH, Livingston EH. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312:934–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. Circulation. 2014;129:S102–38.

    Article  PubMed  Google Scholar 

  6. Skinner AC, Skelton JA. Prevalence and trends in obesity and severe obesity among children in the United States, 1999–2012. JAMA Pediatr. 2014;168:561–6.

    Article  PubMed  Google Scholar 

  7. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. 2015;161:119–32.

    Article  PubMed  CAS  Google Scholar 

  8. Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. 2007;129:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwartz GJ, Zeltser LM. Functional organization of neuronal and humoral signals regulating feeding behavior. Annu Rev Nutr. 2013;33:1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Silva A, Salem V, Long CJ, et al. The gut hormones PYY 3–36 and GLP-1 7–36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14:700–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science. 2007;317:1355.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 2008;118:2583–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.

    Article  CAS  PubMed  Google Scholar 

  14. Speakman JR, Selman C. Physical activity and resting metabolic rate. Proc Nutr Soc. 2003;62:621–34.

    Article  PubMed  Google Scholar 

  15. Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86:1423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014;220:T25–46.

    Article  CAS  PubMed  Google Scholar 

  17. Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22:546–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen P, Spiegelman BM. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes. 2015;64:2346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee P, Greenfield JR. Non-pharmacological and pharmacological strategies of brown adipose tissue recruitment in humans. Mol Cell Endocrinol. 2015;418(Pt 2):184–90.

    Article  CAS  PubMed  Google Scholar 

  20. Richard D, Carpentier AC, Dore G, Ouellet V, Picard F. Determinants of brown adipocyte development and thermogenesis. Int J Obes (Lond). 2010;34 Suppl 2:S59–66.

    Article  CAS  Google Scholar 

  21. Kozak LP. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 2010;11:263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cypess AM, Weiner LS, Roberts-Toler C, et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 2015;21:33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Friedman JM. Leptin, leptin receptors, and the control of body weight. Nutr Rev. 1998;56:s38–46. discussion s54–75.

    Article  CAS  PubMed  Google Scholar 

  24. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.

    Article  CAS  PubMed  Google Scholar 

  25. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387:903–8.

    Article  CAS  PubMed  Google Scholar 

  26. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wabitsch M, Funcke JB, Lennerz B, et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2015;372:48–54.

    Article  PubMed  CAS  Google Scholar 

  28. Wabitsch M, Funcke JB, von Schnurbein J, et al. Severe early-onset obesity due to bioinactive leptin caused by a p.N103K mutation in the leptin gene. J Clin Endocrinol Metab. 2015;100:3227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doche ME, Bochukova EG, Su HW, et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Invest. 2012;122:|4732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bochukova EG, Huang N, Keogh J, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature. 2010;463:666–70.

    Article  CAS  PubMed  Google Scholar 

  32. Walters RG, Jacquemont S, Valsesia A, et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature. 2010;463:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7.

    Article  CAS  PubMed  Google Scholar 

  34. Jackson RS, Creemers JW, Farooqi IS, et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest. 2003;112:1550–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farooqi IS, Yeo GS, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106:271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenfield JR, Miller JW, Keogh JM, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360:44–52.

    Article  CAS  PubMed  Google Scholar 

  38. Chen KY, Muniyappa R, Abel BS, et al. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J Clin Endocrinol Metab. 2015;100:1639–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kublaoui BM, Holder Jr JL, Gemelli T, Zinn AR. Sim1 haploinsufficiency impairs melanocortin-mediated anorexia and activation of paraventricular nucleus neurons. Mol Endocrinol. 2006;20:2483–92.

    Article  CAS  PubMed  Google Scholar 

  40. Ramachandrappa S, Raimondo A, Cali AM, et al. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest. 2013;123:3042–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J. 2000;19:1290–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6:736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yeo GS, Connie Hung CC, Rochford J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. 2004;7:1187–9.

    Article  CAS  PubMed  Google Scholar 

  44. Gray J, Yeo GS, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. 2006;55:3366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pearce LR, Atanassova N, Banton MC, et al. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell. 2013;155:765–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalsner L, Chamberlain SJ. Prader-Willi, Angelman, and 15q11-q13 duplication syndromes. Pediatr Clin North Am. 2015;62:587–606.

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Smith AJ, Purmann C, Walters RG, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet. 2009;18:3257–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Haqq AM, Farooqi IS, O’Rahilly S, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88:174–8.

    Article  CAS  PubMed  Google Scholar 

  49. Haqq AM, Stadler DD, Jackson RH, Rosenfeld RG, Purnell JQ, LaFranchi SH. Effects of growth hormone on pulmonary function, sleep quality, behavior, cognition, growth velocity, body composition, and resting energy expenditure in Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88:2206–12.

    Article  CAS  PubMed  Google Scholar 

  50. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 2006;7:125–48.

    Article  CAS  PubMed  Google Scholar 

  51. Weinstein LS, Chen M, Liu J. Gs(alpha) mutations and imprinting defects in human disease. Ann N Y Acad Sci. 2002;968:173–97.

    Article  CAS  PubMed  Google Scholar 

  52. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997;27:325–51.

    Article  CAS  PubMed  Google Scholar 

  53. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE. The body-mass index of twins who have been reared apart. N Engl J Med. 1990;322:1483–7.

    Article  CAS  PubMed  Google Scholar 

  54. Wardle J, Carnell S, Haworth CM, Plomin R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87:398–404.

    CAS  PubMed  Google Scholar 

  55. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90:7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Claussnitzer M, Dankel SN, Kim KH, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maher B. ENCODE: the human encyclopaedia. Nature. 2012;489:46–8.

    Article  PubMed  Google Scholar 

  60. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359:2558–66.

    Article  CAS  PubMed  Google Scholar 

  61. Karra E, O’Daly OG, Choudhury AI, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest. 2013;123:3539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Rahilly S, Coll AP, Yeo GS. FTO obesity variant and adipocyte browning in humans. N Engl J Med. 2016;374:191.

    PubMed  Google Scholar 

  63. Magi R, Manning S, Yousseif A, et al. Contribution of 32 GWAS-identified common variants to severe obesity in European adults referred for bariatric surgery. PLoS One. 2013;8:e70735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wheeler E, Huang N, Bochukova EG, et al. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet. 2013;45:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Johnston BC, Kanters S, Bandayrel K, et al. Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA. 2014;312:923–33.

    Article  PubMed  CAS  Google Scholar 

  66. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.

    Article  PubMed  Google Scholar 

  67. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Konttinen H, Haukkala A, Sarlio-Lahteenkorva S, Silventoinen K, Jousilahti P. Eating styles, self-control and obesity indicators. The moderating role of obesity status and dieting history on restrained eating. Appetite. 2009;53:131–4.

    Article  PubMed  Google Scholar 

  69. Allison KC, Grilo CM, Masheb RM, Stunkard AJ. Binge eating disorder and night eating syndrome: a comparative study of disordered eating. J Consult Clin Psychol. 2005;73:1107–15.

    Article  PubMed  Google Scholar 

  70. de Zwaan M, Mitchell JE. Binge eating in the obese. Ann Med. 1992;24:303–8.

    Article  PubMed  Google Scholar 

  71. Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci. 2012;13:279–86.

    Article  CAS  PubMed  Google Scholar 

  72. Mostad IL, Langaas M, Grill V. Central obesity is associated with lower intake of whole-grain bread and less frequent breakfast and lunch: results from the HUNT study, an adult all-population survey. Appl Physiol Nutr Metab. 2014;39:819–28.

    Article  PubMed  Google Scholar 

  73. Gill S, Panda S. A smartphone App reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22:789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Church TS, Thomas DM, Tudor-Locke C, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One. 2011;6:e19657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maher CA, Mire E, Harrington DM, Staiano AE, Katzmarzyk PT. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003-06. Obesity (Silver Spring). 2013;21:E730–7.

    Article  Google Scholar 

  76. Gerstein HC. Do lifestyle changes reduce serious outcomes in diabetes? N Engl J Med. 2013;369:189–90.

    Article  CAS  PubMed  Google Scholar 

  77. Dietz Jr WH, Gortmaker SL. Do we fatten our children at the television set? Obesity and television viewing in children and adolescents. Pediatrics. 1985;75:807–12.

    PubMed  Google Scholar 

  78. Robinson TN. Reducing children’s television viewing to prevent obesity: a randomized controlled trial. JAMA. 1999;282:1561–7.

    Article  CAS  PubMed  Google Scholar 

  79. Council on Communications and Media, Strasburger VC. Children, adolescents, obesity, and the media. Pediatrics. 2011;128:201–8.

    Google Scholar 

  80. Drewnowski A. The economics of food choice behavior: why poverty and obesity are linked. Nestle Nutr Inst Workshop Ser. 2012;73:95–112.

    Article  PubMed  Google Scholar 

  81. Ozanne SE. Epigenetic signatures of obesity. N Engl J Med. 2015;372:973–4.

    Article  CAS  PubMed  Google Scholar 

  82. Baptiste-Roberts K, Nicholson WK, Wang NY, Brancati FL. Gestational diabetes and subsequent growth patterns of offspring: the National Collaborative Perinatal Project. Matern Child Health J. 2012;16:125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70:811–6.

    CAS  PubMed  Google Scholar 

  84. Leslie WS, Hankey CR, Lean ME. Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review. QJM. 2007;100:395–404.

    Article  CAS  PubMed  Google Scholar 

  85. Bray GA, Ryan DH. Medical therapy for the patient with obesity. Circulation. 2012;125:1695–703.

    Article  PubMed  Google Scholar 

  86. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–53.

    Article  PubMed  Google Scholar 

  87. Coll AP, Yeo GS, Farooqi IS, O’Rahilly S. SnapShot: the hormonal control of food intake. Cell. 2008;135:572.e1–2.

    Article  CAS  Google Scholar 

  88. Pantoja C, Huff JT, Yamamoto KR. Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro. Mol Biol Cell. 2008;19:4032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Deshmukh-Taskar P, Nicklas TA, Morales M, Yang SJ, Zakeri I, Berenson GS. Tracking of overweight status from childhood to young adulthood: the Bogalusa Heart Study. Eur J Clin Nutr. 2006;60:48–57.

    Article  CAS  PubMed  Google Scholar 

  90. Smith DE, Lewis CE, Caveny JL, Perkins LL, Burke GL, Bild DE. Longitudinal changes in adiposity associated with pregnancy. The CARDIA Study. Coronary Artery Risk Development in Young Adults Study. JAMA. 1994;271:1747–51.

    Article  CAS  PubMed  Google Scholar 

  91. Sowers M, Zheng H, Tomey K, et al. Changes in body composition in women over six years at midlife: ovarian and chronological aging. J Clin Endocrinol Metab. 2007;92:895–901.

    Article  CAS  PubMed  Google Scholar 

  92. Winer DA, Luck H, Tsai S, Winer S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 2016;23:413–26.

    Article  CAS  PubMed  Google Scholar 

  93. Gerber JS, Bryan M, Ross RK, et al. Antibiotic exposure during the first 6 months of life and weight gain during childhood. JAMA. 2016;315:1258–65.

    Article  CAS  PubMed  Google Scholar 

  94. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6. e7.

    Article  CAS  PubMed  Google Scholar 

  95. Patel CJ, Ioannidis JP. Studying the elusive environment in large scale. JAMA. 2014;311:2173–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang T, Hu FB. Gene–environment interactions and obesity: recent developments and future directions. BMC Med Genomics. 2015;8 Suppl 1:S2.

    Article  CAS  Google Scholar 

  97. Marigorta UM, Gibson G. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects. Front Genet. 2014;5:225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Demerath EW, Lutsey PL, Monda KL, et al. Interaction of FTO and physical activity level on adiposity in African-American and European-American adults: the ARIC study. Obesity (Silver Spring). 2011;19:1866–72.

    Article  CAS  Google Scholar 

  99. Kilpelainen TO, Qi L, Brage S, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8:e1001116.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Qi Q, Chu AY, Kang JH, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367:1387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qi Q, Chu AY, Kang JH, et al. Fried food consumption, genetic risk, and body mass index: gene–diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Garber JR, Cobin RH, Gharib H, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012;18:988–1028.

    Article  PubMed  Google Scholar 

  103. Nieman LK, Biller BM, Findling JW, et al. Treatment of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2015;100:2807–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Holmer H, Pozarek G, Wirfalt E, et al. Reduced energy expenditure and impaired feeding-related signals but not high energy intake reinforces hypothalamic obesity in adults with childhood onset craniopharyngioma. J Clin Endocrinol Metab. 2010;95:5395–402.

    Article  CAS  PubMed  Google Scholar 

  105. Muller HL, Emser A, Faldum A, et al. Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J Clin Endocrinol Metab. 2004;89:3298–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Dash Ph.D., M.B.B.S., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dash, S. (2017). Causes of Severe Obesity: Genes to Environment. In: Sockalingam, S., Hawa, R. (eds) Psychiatric Care in Severe Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-42536-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42536-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42534-4

  • Online ISBN: 978-3-319-42536-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics