Skip to main content

Towards an Understanding of the Genetics of Tendinopathy

  • Chapter
  • First Online:
Metabolic Influences on Risk for Tendon Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 920))

Abstract

To date, more than 18 genomic intervals, which underpin the complex myriad of extracellular matrix interactions of tendons, have been implicated in risk models for tendinopathy. It is these relationships that most likely regulate the tissue’s response to loading and unloading, thereby dictating the overall capacity of tendons and influencing injury susceptibility. The evidence suggesting a genetic contribution to the susceptibility of sustaining a tendon injury is growing. However, only a few of the loci have been repeated in independent studies, of which some have included a range of musculoskeletal soft tissues injuries. Case-control study designs can be effective in capturing risk, provided that the cases and controls are equally well-defined and carefully considered. The genome consists of 3.6 × 109 sequences and therefore we realise that we are far from decoding all the genomic signatures. We are indeed fortunate to be living in such exciting times where high-throughput technologies are at our disposal. Through collaboration, our chances of harnessing these “omics” technologies to further our clinical understanding of tendinopathy will increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mokone GG, Schwellnus MP, Noakes TD, Collins M (2006) The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports 16:19–26

    Article  CAS  PubMed  Google Scholar 

  2. Saunders CJ, van der Merwe L, Posthumus M, Cook J, Handley CJ, Collins M et al (2013) Investigation of variants within the COL27A1 and TNC genes and Achilles tendinopathy in two populations. J Orthop Res 31:632–637

    Article  CAS  PubMed  Google Scholar 

  3. Raleigh SM, van der Merwe L, Ribbans WJ, Smith RKW, Schwellnus MP, Collins M (2009) Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. Br J Sports Med 43:514–520

    Article  CAS  PubMed  Google Scholar 

  4. September AV, Nell E-M, O’Connell K, Cook J, Handley CJ, van der Merwe L et al (2011) A pathway-based approach investigating the genes encoding interleukin-1, interleukin-6 and the interleukin-1 receptor antagonist provides new insight into the genetic susceptibility of Achilles tendinopathy. Br J Sports Med 45:1040–1047

    Article  PubMed  Google Scholar 

  5. Posthumus M, Collins M, Cook J, Handley CJ, Ribbans WJ, Smith RKW et al (2010) Components of the transforming growth factor-beta family and the pathogenesis of human Achilles tendon pathology – a genetic association study. Rheumatology 49:2090–2097

    Article  CAS  PubMed  Google Scholar 

  6. September AV, Cook J, Handley CJ, van der Merwe L, Schwellnus MP, Collins M (2009) Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med 43:357–365

    Article  CAS  PubMed  Google Scholar 

  7. Abrahams Y, Laguette M-J, Prince S, Collins M (2013) Polymorphisms within the COL5A1 3’-UTR that alters mRNA structure and the MIR608 gene are associated with Achilles tendinopathy. Ann Hum Genet 77:204–214

    Article  CAS  PubMed  Google Scholar 

  8. Laguette M-J, Abrahams Y, Prince S, Collins M (2011) Sequence variants within the 3’-UTR of the COL5A1 gene alters mRNA stability: implications for musculoskeletal soft tissue injuries. Matrix Biol 30:338–345

    Article  CAS  PubMed  Google Scholar 

  9. Burger M, de Wet H, Collins M (2015) The COL5A1 gene is associated with increased risk of carpal tunnel syndrome. Clin Rheumatol 34:767–774

    Article  PubMed  Google Scholar 

  10. Collins M, Posthumus M (2011) Type V collagen genotype and exercise-related phenotype relationships. Exerc Sport Sci Rev 39:191–198

    PubMed  Google Scholar 

  11. Hay M, Patricios J, Collins R, Branfield A, Cook J, Handley CJ et al (2013) Association of type XI collagen genes with chronic Achilles tendinopathy in independent populations from South Africa and Australia. Br J Sports Med 47:569–574

    Article  PubMed  Google Scholar 

  12. Wenstrup RJ, Smith SM, Florer JB, Zhang G, Beason DP, Seegmiller RE et al (2011) Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem 286:20455–20465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khoury L, Posthumus M, Collins M, van der Merwe W, Handley C, Cook J et al (2014) ELN and FBN2 gene variants as risk factors for two sports-related musculoskeletal injuries. Int J Sports Med 36:333–337

    Article  PubMed  Google Scholar 

  14. Docking S, Samiric T, Scase E, Purdam C, Cook J (2013) Relationship between compressive loading and ECM changes in tendons. Muscles Ligaments Tendons J 3:7–11

    PubMed  PubMed Central  Google Scholar 

  15. Yanagishita M (1993) Function of proteoglycans in the extracellular matrix. Acta Pathol Jpn 43:283–293

    CAS  PubMed  Google Scholar 

  16. Nastase MV, Young MF, Schaefer L (2012) Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem 60:963–975

    Article  PubMed  PubMed Central  Google Scholar 

  17. Burger MC, De Wet H, Collins M (2014) The BGN and ACAN genes and carpal tunnel syndrome. Gene 551:160–166

    Article  CAS  PubMed  Google Scholar 

  18. Pasternak B, Aspenberg P (2009) Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthop 80:693–703

    Article  PubMed  PubMed Central  Google Scholar 

  19. Somerville RPT, Oblander SA, Apte SS (2003) Matrix metalloproteinases: old dogs with new tricks. Genome Biol 4:216

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM et al (2006) Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human Achilles tendon. Arthritis Rheum 54:832–842

    Article  CAS  PubMed  Google Scholar 

  21. de Mos M, van El B, DeGroot J, Jahr H, van Schie HTM, van Arkel ER et al (2007) Achilles tendinosis: changes in biochemical composition and collagen turnover rate. Am J Sports Med 35:1549–1556

    Article  PubMed  Google Scholar 

  22. Godoy-Santos A, Cunha MV, Ortiz RT, Fernandes TD, Mattar R, dos Santos MCLG (2013) MMP-1 promoter polymorphism is associated with primary tendinopathy of the posterior tibial tendon. J Orthop Res 31:1103–1107

    Article  CAS  PubMed  Google Scholar 

  23. Baroneza JE, Godoy-Santos A, Ferreira Massa B, Boçon de Araujo Munhoz F, Diniz Fernandes T, Leme Godoy Dos Santos MC (2014) MMP-1 promoter genotype and haplotype association with posterior tibial tendinopathy. Gene 547:334–337

    Article  CAS  PubMed  Google Scholar 

  24. Godoy-Santos A, Ortiz RT, Junior RM, Fernandes TD, Santos MCLG (2014) MMP-8 polymorphism is genetic marker to tendinopathy primary posterior tibial tendon. Scand J Med Sci Sport 24:220–223

    Article  CAS  Google Scholar 

  25. El Khoury L, Posthumus M, Collins M, Handley CJ, Cook J, Raleigh SM (2013) Polymorphic variation within the ADAMTS2, ADAMTS14, ADAMTS5, ADAM12 and TIMP2 genes and the risk of Achilles tendon pathology: a genetic association study. J Sci Med Sport 16:493–498

    Article  PubMed  Google Scholar 

  26. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    Article  CAS  PubMed  Google Scholar 

  27. Yang G, Im H-J, Wang JH-C (2005) Repetitive mechanical stretching modulates IL-1β induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 363:166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsuzaki M, Guyton G, Garrett W, Archambault JM, Herzog W, Almekinders L et al (2003) IL-1B induces COX2, MMP-1, −3 and −13, ADAMTS-4, IL-1B and IL-6 in human tendon cells. J Orthop Res 21:256–264

    Article  CAS  PubMed  Google Scholar 

  29. Thampatty BP, Li H, Im H-J, Wang JH-C (2007) EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-1β treatment. Gene 386:154–161

    Article  CAS  Google Scholar 

  30. Burger MC, de Wet H, Collins M (2015) Interleukin and growth factor gene variants and risk of carpal tunnel syndrome. Gene 564:67–72

    Article  CAS  PubMed  Google Scholar 

  31. Buxton P, Edwards C, Archer CW, Francis-West P (2001) Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg Am 83-A(Suppl):S23–S30

    PubMed  Google Scholar 

  32. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R et al (1999) Mechanisms of GDF-5 action during skeletal development. Development 126:1305–1315

    CAS  PubMed  Google Scholar 

  33. Nell E-M, van der Merwe L, Cook J, Handley CJ, Collins M, September AV (2012) The apoptosis pathway and the genetic predisposition to Achilles tendinopathy. J Orthop Res 30:1719–1724

    Article  CAS  PubMed  Google Scholar 

  34. Millar NL, Wei AQ, Molloy TJ, Bonar F, Murrell GAC (2009) Cytokines and apoptosis in supraspinatus tendinopathy. J Bone Joint Surg (Br) 91:417–424

    Article  CAS  Google Scholar 

  35. Saunders CJ, van der Merwe L, Cook J, Handley CJ, Collins M, September AV (2015) Extracellular matrix proteins interact with cell-signaling pathways in modifying risk of achilles tendinopathy. J Orthop Res 33:898–903

    Article  CAS  PubMed  Google Scholar 

  36. September AV, Posthumus M, Collins M (2012) Application of genomics in the prevention, treatment and management of Achilles tendinopathy and anterior cruciate ligament ruptures. Recent Pat DNA Gene Seq 6:216–223

    Article  CAS  PubMed  Google Scholar 

  37. Collins M, September AV, Posthumus M (2015) Biological variation in musculoskeletal injuries: current knowledge, future research and practical implications. Br J Sports Med 49:1497–1503

    Article  PubMed  Google Scholar 

  38. Cook JL, Docking SI (2015) Rehabilitation will increase the ‘capacity’ of your …insert musculoskeletal tissue here… Defining “tissue capacity”: a core concept for clinicians. Br J Sport Med 49(23):1484–1485

    Article  CAS  Google Scholar 

  39. Raleigh SM, Collins M (2012) Gene variants that predispose to Achilles tendon injuries: an update on recent advances. Achilles Tendon. InTech, pp 25–40

    Google Scholar 

  40. September AV, Mokone GG, Schwellnus MP, Collins M (2006) Genetic risk factors for Achilles tendon injuries. Int Sport J 7:201–215

    Google Scholar 

  41. September AV, Schwellnus MP, Collins M, Gibson W (2007) Tendon and ligament injuries: the genetic component. Br J Sports Med 41:241–246

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison September .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

September, A., Rahim, M., Collins, M. (2016). Towards an Understanding of the Genetics of Tendinopathy. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_9

Download citation

Publish with us

Policies and ethics