Skip to main content

Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading

  • Chapter
  • First Online:
Metabolic Influences on Risk for Tendon Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 920))

Abstract

In recent years a number of methodological developments have improved the opportunities to study human tendon. Microdialysis enables sampling of interstitial fluid in the peritendon tissue, while sampling of human tendon biopsies allows direct analysis of tendon tissue for gene- and protein expression as well as protein synthesis rate. Further the 14C bomb-pulse method has provided data on long-term tissue turnover in human tendon. Non-invasive techniques allow measurement of tendon metabolism (positron emission tomography (PET)), tendon morphology (magnetic resonance imaging (MRI)), and tendon mechanical properties (ultrasonography combined with force measurement during movement). Finally, 3D cell cultures of human tendon cells provide the opportunity to investigate cell-matrix interactions in response to various interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Asp:

Aspartate

CSA:

Cross-sectional area

FGD:

Fluorodeoxyglucose

MMP:

Matrix metallo proteinase

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

PINP:

Pro-collagen I N-terminal peptide

PICP:

Pro-collagen I C-terminal peptide

ICTP:

Human C-telopeptide of type I collagen

UTC:

Ultrasound Tissue Characterization

References

  1. Mienaltowski MJ, Birk DE (2014) Mouse models in tendon and ligament research. Adv Exp Med Biol 802:201–230

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen RH, Couppe C, Jensen JK, Olsen MR, Heinemeier KM, Malfait F et al (2014) Low tendon stiffness and abnormal ultrastructure distinguish classic Ehlers-Danlos syndrome from benign joint hypermobility syndrome in patients. FASEB J 28(11):4668–4676

    Article  CAS  PubMed  Google Scholar 

  3. Langberg H, Olesen JL, Bulow J, Kjaer M (2002) Intra- and peri-tendinous microdialysis determination of glucose and lactate in pigs. Acta Physiol Scand 174(4):377–380

    Article  CAS  PubMed  Google Scholar 

  4. Langberg H, Skovgaard D, Karamouzis M, Bulow J, Kjaer M (1999) Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans. J Physiol 515(Pt 3):919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bojsen-Moller J, Kalliokoski KK, Seppanen M, Kjaer M, Magnusson SP (2006) Low-intensity tensile loading increases intratendinous glucose uptake in the Achilles tendon. J Appl Physiol 101(1):196–201

    Article  CAS  PubMed  Google Scholar 

  6. Kovanen V (1989) Effects of ageing and physical training on rat skeletal muscle. An experimental study on the properties of collagen, laminin, and fibre types in muscles serving different functions. Acta Physiol Scand Suppl 577:1–56

    CAS  PubMed  Google Scholar 

  7. Riley GP, Curry V, DeGroot J, van El B, Verzijl N, Hazleman BL et al (2002) Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biol 21(2):185–195

    Article  CAS  PubMed  Google Scholar 

  8. Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM et al (2006) Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthritis Rheum 54(3):832–842

    Article  CAS  PubMed  Google Scholar 

  9. Langberg H, Skovgaard D, Petersen LJ, Bulow J, Kjaer M (1999) Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol 521(Pt 1):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neuberger A, Perrone JC, Slack HG (1951) The relative metabolic inertia of tendon collagen in the rat. Biochem J 49(2):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Repo RU, Mitchell N (1971) Collagen synthesis in mature articular cartilage of the rabbit. J Bone Joint Surg Br 53(3):541–548

    CAS  PubMed  Google Scholar 

  12. Miller BF, Olesen JL, Hansen M, Dossing S, Crameri RM, Welling RJ et al (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567(Pt 3):1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babraj JA, Cuthbertson DJ, Smith K, Langberg H, Miller B, Krogsgaard MR et al (2005) Collagen synthesis in human musculoskeletal tissues and skin. Am J Physiol Endocrinol Metab 289(5):E864–E869

    Article  CAS  PubMed  Google Scholar 

  14. McAnulty RJ, Laurent GJ (1987) Collagen synthesis and degradation in vivo. Evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat. Coll Relat Res 7(2):93–104

    Article  CAS  PubMed  Google Scholar 

  15. Skovgaard D, Kjaer A, Heinemeier KM, Brandt-Larsen M, Madsen J, Kjaer M (2011) Use of cis-[18 F]fluoro-proline for assessment of exercise-related collagen synthesis in musculoskeletal connective tissue. PLoS One 6(2), e16678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holm L, O’Rourke B, Ebenstein D, Toth MJ, Bechshoeft R, Holstein-Rathlou NH et al (2013) Determination of steady-state protein breakdown rate in vivo by the disappearance of protein-bound tracer-labeled amino acids: a method applicable in humans. Am J Physiol Endocrinol Metab 304(8):E895–E907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL (2010) Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem 285(21):15674–15681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, DeGroot J et al (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283(14):8796–8801

    Article  CAS  PubMed  Google Scholar 

  19. Maroudas A, Palla G, Gilav E (1992) Racemization of aspartic acid in human articular cartilage. Connect Tissue Res 28(3):161–169

    Article  CAS  PubMed  Google Scholar 

  20. Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M (2013) Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C. FASEB J 27(5):2074–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodsite ME, Rom W, Heinemeier J, Lange T, Ooi S, Appleby PG et al (2001) High-resolution AMS C-14 dating of post-bomb peat archives of atmospheric pollutants. Radiocarbon 43(2B):495–515

    Article  CAS  Google Scholar 

  22. Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J (2008) Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One 3(1), e1529

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bayer ML, Yeung CY, Kadler KE, Qvortrup K, Baar K, Svensson RB et al (2010) The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension. Biomaterials 31(18):4889–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalson NS, Holmes DF, Herchenhan A, Lu Y, Starborg T, Kadler KE (2011) Slow stretching that mimics embryonic growth rate stimulates structural and mechanical development of tendon-like tissue in vitro. Dev Dyn 240(11):2520–2528

    Article  PubMed  PubMed Central  Google Scholar 

  25. Paxton JZ, Grover LM, Baar K (2010) Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng Part A 16(11):3515–3525

    Article  CAS  PubMed  Google Scholar 

  26. Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J et al (1999) Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage 7(1):141–153

    Article  CAS  PubMed  Google Scholar 

  27. Bayer ML, Schjerling P, Herchenhan A, Zeltz C, Heinemeier KM, Christensen L et al (2014) Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS One 9(1), e86078

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hagerty P, Lee A, Calve S, Lee CA, Vidal M, Baar K (2012) The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials 33:6355–6361

    Article  CAS  PubMed  Google Scholar 

  29. Kongsgaard M, Aagaard P, Kjaer M, Magnusson SP (2005) Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol 99(5):1965–1971

    Article  CAS  PubMed  Google Scholar 

  30. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M et al (2007) Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (Oxf) 191(2):111–121

    Article  CAS  Google Scholar 

  31. Couppe C, Kongsgaard M, Aagaard P, Hansen P, Bojsen-Moller J, Kjaer M et al (2008) Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol 105(3):805–810

    Article  CAS  PubMed  Google Scholar 

  32. Arampatzis A, Karamanidis K, Albracht K (2007) Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol 210(Pt 15):2743–2753

    Article  PubMed  Google Scholar 

  33. Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF et al (2009) Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol 107(2):523–530

    Article  CAS  PubMed  Google Scholar 

  34. Couppe C, Svensson RB, Sodring-Elbrond V, Hansen P, Kjaer M, Magnusson SP (2014) Accuracy of MRI technique in measuring tendon cross-sectional area. Clin Physiol Funct Imaging 34(3):237–241

    Article  CAS  PubMed  Google Scholar 

  35. Ekizos A, Papatzika F, Charcharis G, Bohm S, Mersmann F, Arampatzis A (2013) Ultrasound does not provide reliable results for the measurement of the patellar tendon cross sectional area. J Electromyogr Kinesiol 23(6):1278–1282

    Article  PubMed  Google Scholar 

  36. van Schie HT, de Vos RJ, de Jonge S, Bakker EM, Heijboer MP, Verhaar JA et al (2010) Ultrasonographic tissue characterisation of human Achilles tendons: quantification of tendon structure through a novel non-invasive approach. Br J Sports Med 44(16):1153–1159

    Article  PubMed  Google Scholar 

  37. Cronkite AE (1936) The tensile strength of human tendons. Anat Rec 64(2):173–186

    Article  Google Scholar 

  38. Fukunaga T, Ito M, Ichinose Y, Kuno S, Kawakami Y, Fukashiro S (1996) Tendinous movement of a human muscle during voluntary contractions determined by real-time ultrasonography. J Appl Physiol 81(3):1430–1433

    CAS  PubMed  Google Scholar 

  39. An KN, Takahashi K, Harrigan TP, Chao EY (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106(3):280–282

    Article  CAS  PubMed  Google Scholar 

  40. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Moller F, Dyhre-Poulsen P (2000) Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 10(2):58–67

    Article  CAS  PubMed  Google Scholar 

  41. Kubo K, Kanehisa H, Miyatani M, Tachi M, Fukunaga T (2003) Effect of low-load resistance training on the tendon properties in middle-aged and elderly women. Acta Physiol Scand 178(1):25–32

    Article  CAS  PubMed  Google Scholar 

  42. Hansen P, Bojsen-Moller J, Aagaard P, Kjaer M, Magnusson SP (2006) Mechanical properties of the human patellar tendon, in vivo. Clin Biomech (Bristol, Avon) 21(1):54–58

    Article  CAS  Google Scholar 

  43. Seynnes OR, Bojsen-Moller J, Albracht K, Arndt A, Cronin NJ, Finni T et al (2015) Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol 118(2):133–141

    Article  CAS  PubMed  Google Scholar 

  44. Korstanje JW, Selles RW, Stam HJ, Hovius SE, Bosch JG (2010) Development and validation of ultrasound speckle tracking to quantify tendon displacement. J Biomech 43(7):1373–1379

    Article  PubMed  Google Scholar 

  45. Arndt A, Bengtsson AS, Peolsson M, Thorstensson A, Movin T (2012) Non-uniform displacement within the Achilles tendon during passive ankle joint motion. Knee Surg Sports Traumatol Arthrosc 20(9):1868–1874

    Article  PubMed  Google Scholar 

  46. Svensson RB, Hansen P, Hassenkam T, Haraldsson BT, Aagaard P, Kovanen V et al (2012) Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril. J Appl Physiol 112(3):419–426

    Article  PubMed  Google Scholar 

  47. Haraldsson BT, Aagaard P, Qvortrup K, Bojsen-Moller J, Krogsgaard M, Koskinen S et al (2008) Lateral force transmission between human tendon fascicles. Matrix Biol 27(2):86–95

    Article  CAS  PubMed  Google Scholar 

  48. Hansen P, Haraldsson BT, Aagaard P, Kovanen V, Avery NC, Qvortrup K et al (2010) Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology. J Appl Physiol 108(1):47–52

    Article  PubMed  Google Scholar 

  49. Hansen P, Kovanen V, Holmich P, Krogsgaard M, Hansson P, Dahl M et al (2012) Micromechanical properties and collagen composition of ruptured human achilles tendon. Am J Sports Med

    Google Scholar 

  50. Bennett MB, Ker RF, Dimery NJ, Alexander RM (1986) Mechanical properties of various mammalian tendons. J Zool 209:537–548

    Article  Google Scholar 

  51. Anssari-Benam A, Legerlotz K, Bader DL, Screen HRC (2012) On the specimen length dependency of tensile mechanical properties in soft tissues: Gripping effects and the characteristic decay length. J Biomech 45(14):2481–2482

    Article  PubMed  Google Scholar 

  52. Atkinson TS, Ewers BJ, Haut RC (1999) The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J Biomech 32(9):907–914

    Article  CAS  PubMed  Google Scholar 

  53. Ng BH, Chou SM, Krishna V (2005) The influence of gripping techniques on the tensile properties of tendons. Proc Inst Mech Eng H 219(H5):349–354

    Article  CAS  PubMed  Google Scholar 

  54. Butler DL, Grood ES, Noyes FR, Zernicke RF, Brackett K (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17(8):579–596

    Article  CAS  PubMed  Google Scholar 

  55. Dressler MR, Butler DL, Wenstrup R, Awad HA, Smith F, Boivin GP (2002) A potential mechanism for age-related declines in patellar tendon biomechanics. J Orthop Res 20(6):1315–1322

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto E, Hayashi K, Yamamoto N (1999) Mechanical properties of collagen fascicles from the rabbit patellar tendon. J Biomech Eng 121(1):124–131

    Article  CAS  PubMed  Google Scholar 

  57. Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HRC (2012) Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface 9(76):3108–3117

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hansen P, Kovanen V, Holmich P, Krogsgaard M, Hansson P, Dahl M et al (2013) Micromechanical properties and collagen composition of ruptured human achilles tendon. Am J Sports Med 41(2):437–443

    Article  PubMed  Google Scholar 

  59. Legerlotz K, Riley GP, Screen HRC (2013) GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery. Acta Biomater 9(6):6860–6866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van der Rijt JAJ, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6(9):697–702

    Article  PubMed  Google Scholar 

  61. Eppell SJ, Smith BN, Kahn H, Ballarini R (2006) Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface 3(6):117–121

    Article  CAS  PubMed  Google Scholar 

  62. Sun YL, Luo ZP, Fertala A, An KN (2002) Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun 295(2):382–386

    Article  CAS  PubMed  Google Scholar 

  63. Kemp AD, Harding CC, Cabral WA, Marini JC, Wallace JM (2012) Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 180(3):428–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja M. Heinemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heinemeier, K.M., Kjaer, M., Magnusson, S.P. (2016). Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_8

Download citation

Publish with us

Policies and ethics