Skip to main content

Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development

  • Chapter
  • First Online:
Metabolic Influences on Risk for Tendon Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 920))

Abstract

Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure–property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

BAPN:

Beta-aminopropionitrile

Col I:

Collagen I

Col III:

Collagen III

Col XII:

Collagen XII

DAPI:

4′,6-Diamidino-2-Phenylindole, Dihydrochloride

DMAB:

p-Dimethylaminobenzaldehyde

DNA:

Deoxyribonucleic acid

E:

Embryonic day

ECM:

Extracellular matrix

Egr-1:

Early growth response-1

FGF4:

Fibroblast growth factor 4

FGF8:

Fibroblast growth factor 8

FV-AFM:

Force volume-atomic force microscopy

GFP:

Green fluorescent protein

HH:

Hamilton and Hamburger

HP:

Hydroxylysyl pyridinoline

LP:

Lysyl pyridinoline

LC-MS/MS:

Liquid chromatography tandem-mass spectrometry

LOX:

Lysyl oxidase

Mkx:

Mohawk

MSC:

Mesenchymal stem cell

P:

Postnatal day

PDGF:

Platelet-derived growth factor

Scx:

Scleraxis

SHG:

Second Harmonic Generation

TGFβ1 :

Transforming growth factor beta 1

TGFβ2 :

Transforming growth factor beta 2

Tnmd:

Tenomodulin

TPC:

Tendon progenitor cell

References

  1. Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5:267–277

    Article  CAS  PubMed  Google Scholar 

  2. Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (1999) Determination of the unbinding force of homophilic interaction of vascular endothelial cadherin by atomic force microscopy. Biophys J 76:A351–A351

    Article  Google Scholar 

  3. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–27

    Article  CAS  PubMed  Google Scholar 

  4. Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202:229–243

    Article  CAS  PubMed  Google Scholar 

  5. Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528

    Article  CAS  PubMed  Google Scholar 

  6. Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113:235–248

    Article  CAS  PubMed  Google Scholar 

  7. Brent AE, Tabin CJ (2004) FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 131:3885–3896

    Article  CAS  PubMed  Google Scholar 

  8. Brown JP, Finley VG, Kuo CK (2014) Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J Biomech 47:214–222

    Article  PubMed  Google Scholar 

  9. Brown JP, Galassi TV, Stoppato M, Schiele NR, Kuo CK (2015) Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Res Ther 6:89

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen JW, Galloway JL (2014) The development of zebrafish tendon and ligament progenitors. Development 141:2035–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Docheva D, Hunziker EB, Fassler R, Brandau O (2005) Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25:699–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D (2002) Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol 247:351–366

    Article  CAS  PubMed  Google Scholar 

  13. Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748

    Article  CAS  PubMed  Google Scholar 

  14. Galatz LM, Sandell LJ, Rothermich SY, Das R, Mastny A, Havlioglu N, Silva MJ, Thomopoulos S (2006) Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res 24:541–550

    Article  CAS  PubMed  Google Scholar 

  15. Germiller JA, Goldstein SA (1997) Structure and function of embryonic growth plate in the absence of functioning skeletal muscle. J Orthop Res 15:362–370

    Article  CAS  PubMed  Google Scholar 

  16. Germiller JA, Lerner AL, Pacifico RJ, Loder RT, Hensinger RN (1998) Muscle and tendon size relationships in a paralyzed chick embryo model of clubfoot. J Pediatr Orthop 18:314–318

    CAS  PubMed  Google Scholar 

  17. Glass ZA, Schiele NR, Kuo CK (2014) Informing tendon tissue engineering with embryonic development. J Biomech 47:1964–1968

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, Kadler KE, Baumberger T, Doursounian L, Berenbaum F, Duprez D (2013) Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest 123:3564–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang AH, Riordan TJ, Pryce B, Weibel JL, Watson SS, Long F, Lefebvre V, Harfe BD, Stadler HS, Akiyama H, Tufa SF, Keene DR, Schweitzer R (2015) Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development 142:2431–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, Nishida K, Akimoto T, Takahashi M, Miyaki S, Asahara H (2010) The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci U S A 107:10538–10542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kardon G (1998) Muscle and tendon morphogenesis in the avian hind limb. Development 125:4019–4032

    CAS  PubMed  Google Scholar 

  23. Kieny M, Chevallier A (1979) Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol 49:153–165

    CAS  PubMed  Google Scholar 

  24. Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers JR (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279:35557–35563

    Article  CAS  PubMed  Google Scholar 

  25. Kuo CK, Petersen BC, Tuan RS (2008) Spatiotemporal protein distribution of TGF-betas, their receptors, and extracellular matrix molecules during embryonic tendon development. Dev Dyn 237:1477–1489

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuo CK, Tuan RS (2003) Tissue engineering with mesenchymal stem cells. IEEE Eng Med Biol Mag 22:51–56

    Article  PubMed  Google Scholar 

  27. Kuo CK, Tuan RS (2008) Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 14:1615–1627

    Article  CAS  PubMed  Google Scholar 

  28. Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, Malbouyres M, Bidaud CB, Maro G, Gilardi-Hebenstreit P, Rossert J, Ruggiero F, DupreZ D (2011) EGR1 AND EGR2 INVOLVEMENT IN VERTEBRATE TENDON DIFFERENTIATION. J BIOL CHEM 286:5855–5867

    Article  CAS  PubMed  Google Scholar 

  29. Loparic M, Wirz D, Daniels AU, Raiteri R, Vanlandingham MR, Guex G, Martin I, Aebi U, STOLZ M (2010) Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite. Biophys J 98:2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marturano JE, Arena JD, Schiller ZA, Georgakoudi I, Kuo CK (2013) Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci U S A 110:6370–6375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marturano JE, Xylas JF, Sridharan GV, Georgakoudi I, Kuo CK (2014) Lysyl oxidase-mediated collagen crosslinks may be assessed as markers of functional properties of tendon tissue formation. Acta Biomater 10:1370–1379

    Article  CAS  PubMed  Google Scholar 

  32. Mcbride DJ, Trelstad RL, Silver FH (1988) Structural and mechanical assessment of developing chick tendon. Int J Biol Macromol 10:194–200

    Article  CAS  Google Scholar 

  33. Mikic B, Wong M, Chiquet M, Hunziker EB (2000) Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation. J Orthop Res 18:406–415

    Article  CAS  PubMed  Google Scholar 

  34. Nakagaki WR, Biancalana A, Benevides GP, Gomes L (2007) Biomechanical and biochemical properties of chicken calcaneal tendon under effect of age and nonforced active exercise. Connect Tissue Res 48:219–228

    Article  CAS  PubMed  Google Scholar 

  35. Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dunker N, Schweitzer R (2009) Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development 136:1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schiele NR, Marturano JE, Kuo CK (2013) Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis. Curr Opin Biotechnol 24:834–840

    Article  CAS  PubMed  Google Scholar 

  37. Schiele NR, von Flotow F, Tochka ZL, Hockaday LA, Marturano JE, Thibodeau JJ, Kuo CK (2015) Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development. J Orthop Res 33:874–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schiller ZA, Schiele NR, Sims JK, Lee K, Kuo CK (2013) Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro. Stem Cell Res Ther 4:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866

    CAS  PubMed  Google Scholar 

  40. Sharma RI, Snedeker JG (2010) Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31:7695–7704

    Article  CAS  PubMed  Google Scholar 

  41. Sharma RI, Snedeker JG (2012) Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS One 7, e31504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stolz M, Raiteri R, Daniels AU, Vanlandingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang SS, Trackman PC, Kagan HM (1983) Reaction of aortic lysyl oxidase with beta-aminopropionitrile. J Biol Chem 258:4331–4338

    CAS  PubMed  Google Scholar 

  44. Wurgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ (2007) Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg 16:S198–S203

    Article  PubMed  PubMed Central  Google Scholar 

  45. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413

    Article  CAS  PubMed  Google Scholar 

  46. Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S, Birk DE (2005) Development of tendon structure and function: regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact 5:5–21

    CAS  PubMed  Google Scholar 

  47. Zhang J, Wang JH (2010) Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord 11:10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine K. Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okech, W., Kuo, C.K. (2016). Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_6

Download citation

Publish with us

Policies and ethics