Skip to main content

Immunobiology of T-Cells in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis
  • 3517 Accesses

Abstract

T lymphocytes play a central role in immune homeostasis and modulation of intestinal inflammation. Various subsets of CD4+ T cells, including effector and regulatory T cells, are generated locally and function in the intestinal mucosa. Effector T cells, which mediate inflammation, can be classified by unique cytokine expression signatures. Crohn’s disease (CD) has been associated with Th1 and Th17 cytokine secretion, whereas Th2 cytokines have been associated in ulcerative colitis. However, not all T cells are pathogenic; some normally function to suppress immune responses through diverse mechanisms including the secretion of anti-inflammatory cytokines. Naturally occurring regulatory T cells develop in the thymus whereas those that are generated in the periphery or in vitro are called “inducible” regulatory T cells, which can be further categorized by the cytokines they secrete and the specific methods by which they have been generated. In murine models, a qualitative or quantitative defect in regulatory T cells can lead to colitis development, but there does not appear to be an obvious defect in regulatory T cell number or function in inflammatory bowel diseases. Effector and regulatory T cell localization (homing) to mucosal tissues is facilitated by the expression of unique combinations of specific cell surface molecules. Therapies preventing T cell homing to the gut have been found effective for both Crohn’s disease and ulcerative colitis. Understanding how T cells can mediate or prevent intestinal inflammation may lead to more effective treatments, such as those that may enhance regulatory T cell number and/or function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maynard CL, Weaver CT. Intestinal effector T cells in health and disease. Immunity. 2009;31:389–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–76.

    Article  PubMed  Google Scholar 

  3. Fuss IJ et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157:1261–70.

    CAS  PubMed  Google Scholar 

  4. Fuss IJ et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113:1490–7. doi:10.1172/JCI19836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacDonald TT, Hutchings P, Choy MY, Murch S, Cooke A. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol. 1990;81:301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asseman C, Read S, Powrie F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J Immunol. 2003;171:971–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wirtz S et al. Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF- plus IFN-gamma-producing CD4+ T cells that respond to bacterial antigens. J Immunol. 1999;162:1884–8.

    CAS  PubMed  Google Scholar 

  8. Nguyen DD et al. Lymphocyte-dependent and Th2 cytokine-associated colitis in mice deficient in Wiskott-Aldrich syndrome protein. Gastroenterology. 2007;133:1188–97. doi:S0016-5085(07)01311-X [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev. 2013;252:164–82. doi:10.1111/imr.12039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fujino S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerlach K et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15:676–86. doi:10.1038/ni.2920.

    Article  CAS  PubMed  Google Scholar 

  13. Nalleweg N et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut. 2015;64:743–55. doi:10.1136/gutjnl-2013-305947.

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol. 2015;15:295–307. doi:10.1038/nri3824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mayne CG, Williams CB. Induced and natural regulatory T cells in the development of inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:1772–88. doi:10.1097/MIB.0b013e318281f5a3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol. 2013;5. doi:10.1101/cshperspect.a018341.

  17. Bennett CL et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1. doi:10.1038/83713.

    Article  CAS  PubMed  Google Scholar 

  18. Wildin RS et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20. doi:10.1038/83707.

    Article  CAS  PubMed  Google Scholar 

  19. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002;39:537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maillard MH et al. The Wiskott-Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J Exp Med. 2007;204:381–91. doi:10.1084/jem.20061338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boden EK, Snapper SB. Regulatory T cells in inflammatory bowel disease. Curr Opin Gastroenterol. 2008;24:733–41.

    Article  PubMed  Google Scholar 

  22. Gavin MA et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A. 2006;103:6659–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takahashi T et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192:303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3:135–42.

    Article  CAS  PubMed  Google Scholar 

  25. Liu W et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203:1701–11. doi:10.1084/jem.20060772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seddiki N et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203:1693–700. doi:10.1084/jem.20060468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993;5:1461–71.

    Article  CAS  PubMed  Google Scholar 

  28. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol. 2003;170:3939–43.

    Article  CAS  PubMed  Google Scholar 

  29. Tang Q et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199:1455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kohm AP, Carpentier PA, Anger HA, Miller SD. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol. 2002;169:4712–6.

    Article  CAS  PubMed  Google Scholar 

  31. Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol. 2006;177:1451–9.

    Article  CAS  PubMed  Google Scholar 

  32. Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184:387–96.

    Article  CAS  PubMed  Google Scholar 

  33. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 2000;164:183–90.

    Article  CAS  PubMed  Google Scholar 

  34. Collison LW et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450:566–9.

    Article  CAS  PubMed  Google Scholar 

  35. Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26:579–91.

    Article  CAS  PubMed  Google Scholar 

  36. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190:995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murai M et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10:1178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubtsov YP et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28:546–58. doi:10.1016/j.immuni.2008.02.017.

    Article  CAS  PubMed  Google Scholar 

  39. Liu JQ et al. Increased Th17 and regulatory T cell responses in EBV-induced gene 3-deficient mice lead to marginally enhanced development of autoimmune encephalomyelitis. J Immunol. 2012;188:3099–106. doi:10.4049/jimmunol.1100106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borsellino G et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225–32. doi:10.1182/blood-2006-12-064527.

    Article  CAS  PubMed  Google Scholar 

  41. Deaglio S et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–65. doi:10.1084/jem.20062512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol. 2009;21:612–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bilate AB, Lafaille JJ. It takes two to tango. Immunity. 2011;35:6–8. doi:10.1016/j.immuni.2011.07.003.

    Article  CAS  PubMed  Google Scholar 

  44. Haribhai D et al. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J Immunol. 2009;182:3461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen Y et al. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci U S A. 1996;93:388–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fantini MC et al. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut. 2006;55:671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Groux H et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389:737–42.

    Article  CAS  PubMed  Google Scholar 

  48. Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232–59.

    Article  CAS  PubMed  Google Scholar 

  49. Kamanaka M et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity. 2006;25:941–52. doi:10.1016/j.immuni.2006.09.013.

    Article  CAS  PubMed  Google Scholar 

  50. Battaglia M, Gregori S, Bacchetta R, Roncarolo MG. Tr1 cells: from discovery to their clinical application. Semin Immunol. 2006;18:120–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gagliani N et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013;19:739–46. doi:10.1038/nm.3179.

    Article  CAS  PubMed  Google Scholar 

  52. Collison LW et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol. 2010;11:1093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sefik E et al. Individual intestinal symbionts induce a distinct population of RORgamma + regulatory T cells. Science. 2015;349:993–7. doi:10.1126/science.aaa9420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohnmacht C et al. The microbiota regulates type 2 immunity through RORgammat + T cells. Science. 2015;349:989–93. doi:10.1126/science.aac4263.

    Article  CAS  PubMed  Google Scholar 

  55. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry A. 2014;85:36–42. doi:10.1002/cyto.a.22348.

    Article  PubMed  CAS  Google Scholar 

  56. Wohlfert E, Belkaid Y. Plasticity of Treg at infected sites. Mucosal Immunol. 2010;3:213–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21:274–80.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou X et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10:1000–7. doi:10.1038/ni.1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology. 2011;140:957–65. doi:10.1053/j.gastro.2010.12.002.

    Article  CAS  PubMed  Google Scholar 

  60. Gagliani N et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;523:221–5. doi:10.1038/nature14452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Esplugues E et al. Control of TH17 cells occurs in the small intestine. Nature. 2011;475:514–8. doi:10.1038/nature10228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brimnes J et al. Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol. 2005;174:5814–22.

    Article  CAS  PubMed  Google Scholar 

  63. Allez M, Brimnes J, Dotan I, Mayer L. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology. 2002;123:1516–26.

    Article  PubMed  Google Scholar 

  64. Poussier P, Ning T, Banerjee D, Julius M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J Exp Med. 2002;195:1491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Das G et al. An important regulatory role for CD4+CD8 alpha alpha T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proc Natl Acad Sci U S A. 2003;100:5324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci U S A. 2002;99:14338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nanno M et al. Exacerbating role of gammadelta T cells in chronic colitis of T-cell receptor alpha mutant mice. Gastroenterology. 2008;134:481–90.

    Article  CAS  PubMed  Google Scholar 

  68. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity. 2002;17:629–38.

    Article  CAS  PubMed  Google Scholar 

  69. Saubermann LJ et al. Activation of natural killer T cells by alpha-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology. 2000;119:119–28.

    Article  CAS  PubMed  Google Scholar 

  70. Olszak T et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science (New York, NY). 2012;336(6080):489–93. doi:10.1126/science.1219328.

    Article  CAS  Google Scholar 

  71. Matsuura T, West GA, Youngman KR, Klein JS, Fiocchi C. Immune activation genes in inflammatory bowel disease. Gastroenterology. 1993;104:448–58.

    Article  CAS  PubMed  Google Scholar 

  72. Boirivant M et al. Lamina propria T cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology. 1999;116:557–65.

    Article  CAS  PubMed  Google Scholar 

  73. Galvez J. Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014;2014:928461. doi:10.1155/2014/928461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wallace KL, Zheng LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20:6–21. doi:10.3748/wjg.v20.i1.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Awane M, Andres PG, Li DJ, Reinecker HC. NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells. J Immunol. 1999;162:5337–44.

    CAS  PubMed  Google Scholar 

  76. Witowski J et al. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells. J Immunol. 2000;165:5814–21.

    Article  CAS  PubMed  Google Scholar 

  77. Franke A et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25. doi:10.1038/ng.717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Franke A et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet. 2010;42:292–4. doi:10.1038/ng.553.

    Article  CAS  PubMed  Google Scholar 

  79. McGovern DP et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42:332–7. doi:10.1038/ng.549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cui D, Huang G, Yang D, Huang B, An B. Efficacy and safety of interferon-gamma-targeted therapy in Crohn’s disease: a systematic review and meta-analysis of randomized controlled trials. Clin Res Hepatol Gastroenterol. 2013;37:507–13. doi:10.1016/j.clinre.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  81. Reinisch W et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010;16:233–42. doi:10.1002/ibd.21038.

    Article  PubMed  Google Scholar 

  82. Reinisch W et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut. 2006;55:1138–44. doi:10.1136/gut.2005.079434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hueber W et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700. doi:10.1136/gutjnl-2011-301668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Danese S et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64:243–9. doi:10.1136/gutjnl-2014-308004.

    Article  CAS  PubMed  Google Scholar 

  85. Reinisch W et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut. 2015;64:894–900. doi:10.1136/gutjnl-2014-308337.

    Article  CAS  PubMed  Google Scholar 

  86. Amiot A, Peyrin-Biroulet L. Current, new and future biological agents on the horizon for the treatment of inflammatory bowel diseases. Therap Adv Gastroenterol. 2015;8:66–82. doi:10.1177/1756283X14558193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abe K et al. Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proc Natl Acad Sci U S A. 2007;104:17022–7. doi:0708469104 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shouval DS et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity. 2014;40:706–19. doi:10.1016/j.immuni.2014.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Podolsky DK. Selective adhesion-molecule therapy and inflammatory bowel disease—a tale of Janus? N Engl J Med. 2005;353:1965–8. doi:10.1056/NEJMe058212.

    Article  CAS  PubMed  Google Scholar 

  91. Feagan BG et al. Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin Gastroenterol Hepatol. 2008;6:1370–7.

    Article  CAS  PubMed  Google Scholar 

  92. Sandborn WJ et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–25. doi:10.1056/NEJMoa043335.

    Article  CAS  PubMed  Google Scholar 

  93. Feagan BG et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med. 2005;352:2499–507.

    Article  CAS  PubMed  Google Scholar 

  94. Sandborn WJ et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–21. doi:10.1056/NEJMoa1215739.

    Article  CAS  PubMed  Google Scholar 

  95. Rutgeerts PJ et al. A randomised phase I study of etrolizumab (rhuMAb beta7) in moderate to severe ulcerative colitis. Gut. 2013;62:1122–30. doi:10.1136/gutjnl-2011-301769.

    Article  CAS  PubMed  Google Scholar 

  96. Thomas S, Baumgart DC. Targeting leukocyte migration and adhesion in Crohn’s disease and ulcerative colitis. Inflammopharmacology. 2012;20:1–18. doi:10.1007/s10787-011-0104-6.

    Article  CAS  PubMed  Google Scholar 

  97. Neurath MF. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 2014;7:6–19. doi:10.1038/mi.2013.73.

    Article  CAS  PubMed  Google Scholar 

  98. Papadakis KA et al. CC chemokine receptor 9 expression defines a subset of peripheral blood lymphocytes with mucosal T cell phenotype and Th1 or T-regulatory 1 cytokine profile. J Immunol. 2003;171:159–65.

    Article  CAS  PubMed  Google Scholar 

  99. Maul J et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128:1868–78.

    Article  CAS  PubMed  Google Scholar 

  100. Yu QT et al. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis. 2007;13:191–9.

    Article  PubMed  Google Scholar 

  101. Kelsen J et al. FoxP3(+)CD4(+)CD25(+) T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn’s disease. Clin Exp Immunol. 2005;141:549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Canavan JB et al. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn’s disease. Gut. 2015;65:584–94. doi:10.1136/gutjnl-2014-306919.

  103. Desreumaux P et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology. 2012;143:1207–17. doi:10.1053/j.gastro.2012.07.116. e1201–2.

    Article  CAS  PubMed  Google Scholar 

  104. Ochi H et al. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25− LAP+ T cells. Nat Med. 2006;12:627–35.

    Article  CAS  PubMed  Google Scholar 

  105. Ishikawa H et al. Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes. 2007;56:2103–9.

    Article  CAS  PubMed  Google Scholar 

  106. Koreth J et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055–66. doi:10.1056/NEJMoa1108188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Snapper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Snapper, S., Nguyen, D., Biswas, A. (2017). Immunobiology of T-Cells in Inflammatory Bowel Disease. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Cham. https://doi.org/10.1007/978-3-319-33703-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33703-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33701-2

  • Online ISBN: 978-3-319-33703-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics