Skip to main content

Immunobiology of Human Dendritic Cells in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

Breakdown of immunological tolerance towards the commensal microflora in genetically susceptible individuals is believed to be the key event in the pathogenesis of inflammatory bowel disease. Dendritic cells (DC) control the critical balance between anergy and immunity due to their functional dichotomy of being either the most potent antigen presenters or effective inducers of (peripheral) tolerance. Due to their expression of the entire spectrum of pattern recognition receptors (PRRs), such as toll like receptors (TLR) and nucleotide-binding oligomerization domain NOD, they can sense virtually all microbial associated molecular patterns (MAMPs). This puts them in a pivotal position for understanding the distinct innate and adaptive immune responses intestinal microbiota induce in inflammatory bowel disease.

Peripheral blood and mucosal myeloid dendritic cells from Crohn’s and ulcerative colitis patients express TLR2, TLR4, and NOD. Myeloid DC in IBD are important producers and secretors of key inflammatory cytokines such as IL-1, IL-6, IL-8, IL-12, IL-17, IL-23, IL-27, TNF-α, and nitric oxide depending on their location. Single nucleotide polymorphisms in the TLR4 receptor have been associated with Crohn’s disease and strongly polarize Th1 responses against commensal microorganisms by TLR4 mutant DC from Crohn’s patients. NOD2 and ATG16L1 mutant DC from individuals with Crohn’s disease are defective in autophagy induction, required for both bacterial handling and antigen-specific CD4+ T cell responses.

The peripheral blood circulating fraction of dendritic cells correlates with disease activity. DC in IBD were shown to express intercellular adhesion molecule-1 (ICAM-1), integrin α4β7 (CD49d), CCR6, CCR7 (CD197), CDCR8 that facilitate their migration and retention in the mucosal and mesenteric lymph node spaces and the skin respectively. Secretion of CCL21 by stromal cells and high endothelial venules (HEV) attracts them to and retains them in mesenteric lymph nodes. Here they secrete CCL19 that increases their own CCR7 expression, and also attract CCR9+ α4β7+ T-lymphocytes. Their expression of CXCR13 probably attracts B-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.

    Article  PubMed  Google Scholar 

  2. Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380:1606–19.

    Article  PubMed  Google Scholar 

  3. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–95.

    Article  CAS  PubMed  Google Scholar 

  4. Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol. 2007;25:381–418.

    Article  CAS  PubMed  Google Scholar 

  5. Malmstrom V, Shipton D, Singh B, Al-Shamkhani A, Puklavec MJ, Barclay AN, et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol. 2001;166:6972–81.

    Article  CAS  PubMed  Google Scholar 

  6. Leithauser F, Trobonjaca Z, Moller P, Reimann J. Clustering of colonic lamina propria CD4(+) T cells to subepithelial dendritic cell aggregates precedes the development of colitis in a murine adoptive transfer model. Lab Invest. 2001;81:1339–49.

    Article  CAS  PubMed  Google Scholar 

  7. Krajina T, Leithauser F, Moller P, Trobonjaca Z, Reimann J. Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur J Immunol. 2003;33:1073–83.

    Article  CAS  PubMed  Google Scholar 

  8. Cruickshank SM, English NR, Felsburg PJ, Carding SR. Characterization of colonic dendritic cells in normal and colitic mice. World J Gastroenterol. 2005;11:6338–47.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reizis B. Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol. 2010;22:206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, et al. In vivo analysis of dendritic cell development and homeostasis. Science. 2009;324:392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelsall BL, Leon F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol Rev. 2005;206:132–48.

    Article  CAS  PubMed  Google Scholar 

  13. Baumgart DC, Thomas S, Przesdzing I, Metzke D, Bielecki C, Lehmann SM, et al. Exaggerated inflammatory response of primary human myeloid dendritic cells to lipopolysaccharide in patients with inflammatory bowel disease. Clin Exp Immunol. 2009;157:423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vuckovic S, Florin TH, Khalil D, Zhang MF, Patel K, Hamilton I, et al. CD40 and CD86 upregulation with divergent CMRF44 expression on blood dendritic cells in inflammatory bowel diseases. Am J Gastroenterol. 2001;96:2946–56.

    Article  CAS  PubMed  Google Scholar 

  15. Murakami H, Akbar SM, Matsui H, Horiike N, Onji M. Macrophage migration inhibitory factor activates antigen-presenting dendritic cells and induces inflammatory cytokines in ulcerative colitis. Clin Exp Immunol. 2002;128:504–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ikeda Y, Akbar F, Matsui H, Onji M. Characterization of antigen-presenting dendritic cells in the peripheral blood and colonic mucosa of patients with ulcerative colitis. Eur J Gastroenterol Hepatol. 2001;13:841–50.

    Article  CAS  PubMed  Google Scholar 

  17. Begue B, Verdier J, Rieux-Laucat F, Goulet O, Morali A, Canioni D, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am J Gastroenterol. 2011;106:1544–55.

    Article  CAS  PubMed  Google Scholar 

  18. Nieminen JK, Sipponen T, Farkkila M, Vaarala O. Monocyte-derived dendritic cells from Crohn’s disease patients exhibit decreased ability to activate T helper type 17 responses in memory cells. Clin Exp Immunol. 2014;177:190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood. 2002;100:4512–20.

    Article  CAS  PubMed  Google Scholar 

  20. Baumgart DC, Metzke D, Schmitz J, Scheffold A, Sturm A, Wiedenmann B, et al. Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut. 2005;54:228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bsat M, Chapuy L, Baba N, Rubio M, Panzini B, Wassef R, et al. Differential accumulation and function of proinflammatory 6-sulfo LacNAc dendritic cells in lymph node and colon of Crohn’s versus ulcerative colitis patients. J Leukoc Biol. 2015;98:671–81.

    Article  CAS  PubMed  Google Scholar 

  22. Costantini C, Calzetti F, Perbellini O, Micheletti A, Scarponi C, Lonardi S, et al. Human neutrophils interact with both 6-sulfo LacNAc + DC and NK cells to amplify NK-derived IFN{gamma}: role of CD18, ICAM-1, and ICAM-3. Blood. 2011;117:1677–86.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe S, Yamakawa M, Hiroaki T, Kawata S, Kimura O. Correlation of dendritic cell infiltration with active crypt inflammation in ulcerative colitis. Clin Immunol. 2007;122:288–97.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas S, Przesdzing I, Metzke D, Schmitz J, Radbruch A, Baumgart DC. Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation. Clin Exp Immunol. 2009;156:78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Middel P, Raddatz D, Gunawan B, Haller F, Radzun HJ. Increased number of mature dendritic cells in Crohn’s disease: evidence for a chemokine mediated retention mechanism. Gut. 2006;55:220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernardo D, Vallejo-Diez S, Mann ER, Al-Hassi HO, Martinez-Abad B, Montalvillo E, et al. IL-6 promotes immune responses in human ulcerative colitis and induces a skin-homing phenotype in the dendritic cells and Tcells they stimulate. Eur J Immunol. 2012;42:1337–53.

    Article  CAS  PubMed  Google Scholar 

  27. Morise K, Yamaguchi T, Kuroiwa A, Kanayama K, Matsuura T, Shinoda M, et al. Expression of adhesion molecules and HLA-DR by macrophages and dendritic cells in aphthoid lesions of Crohn’s disease: an immunocytochemical study. J Gastroenterol. 1994;29:257–64.

    Article  CAS  PubMed  Google Scholar 

  28. Middel P, Thelen P, Blaschke S, Polzien F, Reich K, Blaschke V, et al. Expression of the T-cell chemoattractant chemokine lymphotactin in Crohn’s disease. Am J Pathol. 2001;159:1751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Damen GM, Hol J, de Ruiter L, Bouquet J, Sinaasappel M, van der Woude J, et al. Chemokine production by buccal epithelium as a distinctive feature of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2006;42:142–9.

    Article  CAS  PubMed  Google Scholar 

  30. Carlsen HS, Baekkevold ES, Johansen FE, Haraldsen G, Brandtzaeg P. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut. 2002;51:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carlsen HS, Baekkevold ES, Morton HC, Haraldsen G, Brandtzaeg P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood. 2004;104:3021–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kawashima D, Oshitani N, Jinno Y, Watanabe K, Nakamura S, Higuchi K, et al. Augmented expression of secondary lymphoid tissue chemokine and EBI1 ligand chemokine in Crohn’s disease. J Clin Pathol. 2005;58:1057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaser A, Ludwiczek O, Holzmann S, Moschen AR, Weiss G, Enrich B, et al. Increased expression of CCL20 in human inflammatory bowel disease. J Clin Immunol. 2004;24:74–85.

    Article  CAS  PubMed  Google Scholar 

  34. Manzo A, Bugatti S, Caporali R, Prevo R, Jackson DG, Uguccioni M, et al. CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am J Pathol. 2007;171:1549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu W, He C, Liu C, Cao AT, Xue X, Evans-Marin HL, et al. miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut. 2014;64(11):1755–64.

    Article  PubMed  Google Scholar 

  36. Hedl M, Lahiri A, Ning K, Cho JH, Abraham C. Pattern recognition receptor signaling in human dendritic cells is enhanced by ICOS ligand and modulated by the Crohn’s disease ICOSLG risk allele. Immunity. 2014;40:734–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanders TJ, McCarthy NE, Giles EM, Davidson KL, Haltalli ML, Hazell S, et al. Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn’s disease. Gastroenterology. 2014;146:1278–88.e1–2.

    Google Scholar 

  38. Wada Y, Hisamatsu T, Kamada N, Okamoto S, Hibi T. Retinoic acid contributes to the induction of IL-12-hypoproducing dendritic cells. Inflamm Bowel Dis. 2009;15:1548–56.

    Article  PubMed  Google Scholar 

  39. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009;58:1481–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bartels LE, Bendix M, Hvas CL, Jorgensen SP, Agnholt J, Agger R, et al. Oral vitamin D3 supplementation reduces monocyte-derived dendritic cell maturation and cytokine production in Crohn’s disease patients. Inflammopharmacology. 2014;22:95–103.

    Article  CAS  PubMed  Google Scholar 

  41. Ueno A, Jijon H, Traves S, Chan R, Ford K, Beck PL, et al. Opposing effects of smoking in ulcerative colitis and Crohn’s disease may be explained by differential effects on dendritic cells. Inflamm Bowel Dis. 2014;20:800–10.

    Article  PubMed  Google Scholar 

  42. Seldenrijk CA, Drexhage HA, Meuwissen SG, Pals ST, Meijer CJ. Dendritic cells and scavenger macrophages in chronic inflammatory bowel disease. Gut. 1989;30:484–91.

    Article  CAS  PubMed  Google Scholar 

  43. Allison MC, Poulter LW. Changes in phenotypically distinct mucosal macrophage populations may be a prerequisite for the development of inflammatory bowel disease. Clin Exp Immunol. 1991;85:504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allison MC, Cornwall S, Poulter LW, Dhillon AP, Pounder RE. Macrophage heterogeneity in normal colonic mucosa and in inflammatory bowel disease. Gut. 1988;29:1531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Silva HJ, Jones M, Prince C, Kettlewell M, Mortensen NJ, Jewell DP. Lymphocyte and macrophage subpopulations in pelvic ileal pouches. Gut. 1991;32:1160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. te Velde AA, van Kooyk Y, Braat H, Hommes DW, Dellemijn TA, Slors JF, et al. Increased expression of DC-SIGN+IL-12+IL-18+ and CD83+IL-12-IL-18− dendritic cell populations in the colonic mucosa of patients with Crohn’s disease. Eur J Immunol. 2003;33:143–51.

    Article  Google Scholar 

  47. Salim SY, Silva MA, Keita AV, Larsson M, Andersson P, Magnusson KE, et al. CD83+CCR7− dendritic cells accumulate in the subepithelial dome and internalize translocated Escherichia coli HB101 in the Peyer’s patches of ileal Crohn’s disease. Am J Pathol. 2009;174:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Baey A, Mende I, Baretton G, Greiner A, Hartl WH, Baeuerle PA, et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol. 2003;170:5089–94.

    Article  PubMed  Google Scholar 

  49. Larousserie F, Pflanz S, Coulomb-L'Hermine A, Brousse N, Kastelein R, Devergne O. Expression of IL-27 in human Th1-associated granulomatous diseases. J Pathol. 2004;202:164–71.

    Article  CAS  PubMed  Google Scholar 

  50. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53:987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, et al. Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 2015;43:146–60.

    Article  CAS  PubMed  Google Scholar 

  52. Yeung MM, Melgar S, Baranov V, Oberg A, Danielsson A, Hammarstrom S, et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-gammadelta expression. Gut. 2000;47:215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Silva MA, Lopez CB, Riverin F, Oligny L, Menezes J, Seidman EG. Characterization and distribution of colonic dendritic cells in Crohn’s disease. Inflamm Bowel Dis. 2004;10:504–12.

    Article  PubMed  Google Scholar 

  54. Bell SJ, Rigby R, English N, Mann SD, Knight SC, Kamm MA, et al. Migration and maturation of human colonic dendritic cells. J Immunol. 2001;166:4958–67.

    Article  CAS  PubMed  Google Scholar 

  55. Ikeda Y, Akbar SM, Matsui H, Onji M. Antigen-presenting dendritic cells in ulcerative colitis. J Gastroenterol. 2002;37 Suppl 14:53–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005;129:50–65.

    Article  CAS  PubMed  Google Scholar 

  57. Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. Gastroenterology. 2009;137:1736–45.

    Article  CAS  PubMed  Google Scholar 

  58. Ogino T, Nishimura J, Barman S, Kayama H, Uematsu S, Okuzaki D, et al. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn’s disease. Gastroenterology. 2013;145:1380–91.e1.

    Google Scholar 

  59. Damen GM, van Lierop P, de Ruiter L, Escher JC, Donders R, Samsom JN, et al. Production of IL12p70 and IL23 by monocyte-derived dendritic cells in children with inflammatory bowel disease. Gut. 2008;57:1480.

    Article  CAS  PubMed  Google Scholar 

  60. Crohn BB, Ginzburg L, Oppenheimer GD. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. By Burril B. Crohn, Leon Ginzburg, and Gordon D. Oppenheimer. JAMA. 1984;251:73–9.

    Article  CAS  PubMed  Google Scholar 

  61. Crohn BB. Granulomatous diseases of the small and large bowel. A historical survey. Gastroenterology. 1967;52:767–72.

    CAS  PubMed  Google Scholar 

  62. Patel P, Barone F, Nunes C, Boursier L, Odell E, Escudier M, et al. Subepithelial dendritic B cells in orofacial granulomatosis. Inflamm Bowel Dis. 2010;16:1051–60.

    Article  PubMed  Google Scholar 

  63. Geboes K, van den Oord J, De Wolf-Peeters C, Desmet V, Rutgeerts P, Janssens J, et al. The cellular composition of granulomas in mesenteric lymph nodes from patients with Crohn’s disease. Virchows Arch A Pathol Anat Histopathol. 1986;409:679–92.

    Article  CAS  PubMed  Google Scholar 

  64. Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med. 2008;205:2139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C, et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol. 2010;185:5577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bedford PA, Todorovic V, Westcott ED, Windsor AC, English NR, Al-Hassi HO, et al. Adipose tissue of human omentum is a major source of dendritic cells, which lose MHC Class II and stimulatory function in Crohn’s disease. J Leukoc Biol. 2006;80:546–54.

    Article  CAS  PubMed  Google Scholar 

  67. Ceresara G, Fogagnolo P, De Cilla S, Panizzo V, Danelli PG, Orzalesi N, et al. Corneal involvement in Crohn’s disease: an in vivo confocal microscopy study. Cornea. 2011;30:136–42.

    Article  PubMed  Google Scholar 

  68. Lindsay JO, Whelan K, Stagg AJ, Gobin P, Al-Hassi HO, Rayment N, et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut. 2006;55:348–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Silva MA, Quera R, Valenzuela J, Salim SY, Soderholm JD, Perdue MH. Dendritic cells and toll-like receptors 2 and 4 in the ileum of Crohn’s disease patients. Dig Dis Sci. 2008;53:1917–28.

    Article  CAS  PubMed  Google Scholar 

  70. Ng SC, Benjamin JL, McCarthy NE, Hedin CR, Koutsoumpas A, Plamondon S, et al. Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn’s disease. Inflamm Bowel Dis. 2011;17:2027–37.

    Article  CAS  PubMed  Google Scholar 

  71. Butler M, Chaudhary R, van Heel DA, Playford RJ, Ghosh S. NOD2 activity modulates the phenotype of LPS-stimulated dendritic cells to promote the development of T-helper type 2-like lymphocytes—possible implications for NOD2-associated Crohn’s disease. J Crohns Colitis. 2007;1:106–15.

    Article  PubMed  Google Scholar 

  72. Zelinkova Z, van Beelen AJ, de Kort F, Moerland PD, Ver Loren van Themaat E, te Velde AA, et al. Muramyl dipeptide-induced differential gene expression in NOD2 mutant and wild-type Crohn’s disease patient-derived dendritic cells. Inflamm Bowel Dis. 2008;14:186–94.

    Article  PubMed  Google Scholar 

  73. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity. 2007;27:660–9.

    Article  PubMed  Google Scholar 

  74. Granzotto M, Fabbro E, Maschio M, Martelossi S, Quaglia S, Tommasini A, et al. Heterozygous nucleotide-binding oligomerization domain-2 mutations affect monocyte maturation in Crohn’s disease. World J Gastroenterol. 2007;13:6191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salucci V, Rimoldi M, Penati C, Sampietro GM, van Duist MM, Matteoli G, et al. Monocyte-derived dendritic cells from Crohn patients show differential NOD2/CARD15-dependent immune responses to bacteria. Inflamm Bowel Dis. 2008;14:812–8.

    Article  PubMed  Google Scholar 

  76. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–7.

    Article  CAS  PubMed  Google Scholar 

  77. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139:1630–41, 41.e1–2.

    Google Scholar 

  78. Strisciuglio C, Miele E, Wildenberg ME, Giugliano FP, Andreozzi M, Vitale A, et al. T300A variant of autophagy ATG16L1 gene is associated with decreased antigen sampling and processing by dendritic cells in pediatric Crohn’s disease. Inflamm Bowel Dis. 2013;19:2339–48.

    Article  PubMed  Google Scholar 

  79. Bengtson MB, Solberg C, Aamodt G, Sauar J, Jahnsen J, Moum B, et al. Familial aggregation in Crohn’s disease and ulcerative colitis in a Norwegian population-based cohort followed for ten years. J Crohns Colitis. 2009;3:92–9.

    Article  PubMed  Google Scholar 

  80. Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol. 2005;115:1260–7.

    Article  CAS  PubMed  Google Scholar 

  81. Braat H, van den Brande J, van Tol E, Hommes D, Peppelenbosch M, van Deventer S. Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr. 2004;80:1618–25.

    CAS  PubMed  Google Scholar 

  82. Al-Hassi HO, Mann ER, Sanchez B, English NR, Peake ST, Landy J, et al. Altered human gut dendritic cell properties in ulcerative colitis are reversed by Lactobacillus plantarum extracellular encrypted peptide STp. Mol Nutr Food Res. 2014;58:1132–43.

    Article  CAS  PubMed  Google Scholar 

  83. Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE, Hart AL, et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut. 2011;60:923–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Baumgart M.D., Ph.D., M.B.A., F.A.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baumgart, D.C. (2017). Immunobiology of Human Dendritic Cells in Inflammatory Bowel Disease. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Cham. https://doi.org/10.1007/978-3-319-33703-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33703-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33701-2

  • Online ISBN: 978-3-319-33703-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics