Skip to main content

Paradigm of T Cell Differentiation in IBD

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

Inflammatory bowel disease (IBD) usually takes a persistent course, and this feature suggests the importance of acquired immunity in the pathogenesis of IBD such as Crohn’s disease (CD) and ulcerative colitis (UC). Helper T (Th) cells differentiated from CD4+ naïve T cells play central roles in the acquired immune system. Th cells are classified as Th1, Th2, Th17, or Treg. In addition, other newly defined Th subsets have also been reported recently. CD was originally thought to be Th1-mediated disease, while UC was thought to be Th2-mediated. However, it has been recently reported that other Th subsets are also involved in the pathogenesis of IBD as well as in multiple animal models. Although Th subsets have become more complexed, it may be helpful for the establishment of future immunologic therapy for IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9(6):641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    Google Scholar 

  4. Zenewicz LA, Antov A, Flavell RA. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med. 2009;15(5):199–207. Review.

    Article  CAS  PubMed  Google Scholar 

  5. Maynard CL, Weaver CT. Intestinal effector T cells in health and disease. Immunity. 2009;31(3):389–400. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52. Review.

    Article  CAS  PubMed  Google Scholar 

  7. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  8. Abraham C, Cho JH. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu Rev Med. 2009;60:97–110. Review.

    Article  CAS  PubMed  Google Scholar 

  9. Atarashi K, Nishimura J, Shima T, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008;455(7214):808–12.

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87. Review.

    Article  CAS  PubMed  Google Scholar 

  11. Neurath MF, Weigmann B, Finotto S, et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med. 2002;195(9):1129–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simpson SJ, Shah S, Comiskey M, et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med. 1998;187(8):1225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berg DJ, Davidson N, Kühn R, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest. 1996;98(4):1010–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Powrie F, Leach MW, Mauze S, et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994;1(7):553–62.

    Article  CAS  PubMed  Google Scholar 

  15. Kullberg MC, Rothfuchs AG, Jankovic D, et al. Helicobacter hepaticus-induced colitis in interleukin-10-deficient mice: cytokine requirements for the induction and maintenance of intestinal inflammation. Infect Immun. 2001;69(7):4232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549. Review.

    Article  CAS  PubMed  Google Scholar 

  17. Boirivant M, Fuss IJ, Chu A, Strober W. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188(10):1929–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neurath MF, Fuss I, Kelsall BL, et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182(5):1281–90.

    Article  CAS  PubMed  Google Scholar 

  19. Heller F, Fuss IJ, Nieuwenhuis EE, et al. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity. 2002;17(5):629–38.

    Article  CAS  PubMed  Google Scholar 

  20. Brozovic S, Nagaishi T, Yoshida M, et al. CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med. 2004;10(5):535–9.

    Article  CAS  PubMed  Google Scholar 

  21. Izcue A, Hue S, Buonocore S, et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity. 2008;28(4):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116(5):1310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wiekowski MT, Leach MW, Evans EW, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol. 2001;166(12):7563–70.

    Article  CAS  PubMed  Google Scholar 

  24. Elson CO, Cong Y, Weaver CT, et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology. 2007;132(7):2359–70.

    Article  CAS  PubMed  Google Scholar 

  25. Fina D, Sarra M, Fantini MC, et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology. 2008;134(4):1038–48.

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa A, Andoh A, Araki Y, et al. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol. 2004;110(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  27. Yang XO, Chang SH, Park H, et al. Regulation of inflammatory responses by IL-17F. J Exp Med. 2008;205(5):1063–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Awasthi A, Kuchroo VK. IL-17A directly inhibits TH1 cells and thereby suppresses development of intestinal inflammation. Nat Immunol. 2009;10(6):568–70.

    Article  CAS  PubMed  Google Scholar 

  29. Mudter J, Amoussina L, Schenk M, et al. The transcription factor IFN regulatory factor-4 controls experimental colitis in mice via T cell-derived IL-6. J Clin Invest. 2008;118(7):2415–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee YK, Turner H, Maynard CL, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30(1):92–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gagliani N, Amezcua-Vesely MC, Iseppon A, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;253(7559):221–5.

    Article  Google Scholar 

  32. Xu L, Kitani A, Fuss I, Strober W. Regulatory T cells induce CD4+CD25−Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogeneous TGF-beta. J Immunol. 2007;178(11):6725–9.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgamma function. Nature. 2008;453(7192):236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoechst B, Gamrekelashvili J, Manns MP, et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–41.

    Article  CAS  PubMed  Google Scholar 

  35. Darvalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells, and together with TGF-beta, generates IL-9+ IL-10+ Foxp3− effector T cells. Nat Immunol. 2008;9(12):1347–55.

    Article  Google Scholar 

  36. Veldhoen M, Uyttenhove C, van Snick J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6.

    Article  CAS  PubMed  Google Scholar 

  37. Licona-Limon P, Henao-Mejia J, Temann AU, et al. Th9 cells drive host immunity against gastrointestinal worm infection. Immunity. 2013;39(4):744–57.

    Article  CAS  PubMed  Google Scholar 

  38. Gerlach K, Hwang Y, Nikolaev A, et al. Th9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15(7):676–86.

    Article  CAS  PubMed  Google Scholar 

  39. Trifari S, Spits H. IL-22producing CD4+ T cells: middle-men between the immune system and its environment. Eur J Immunol. 2010;40(9):2369–71.

    Article  CAS  PubMed  Google Scholar 

  40. Leuing JM, Davenport M, Wolff MJ, et al. IL-22-producing CD4+ T cells are depleted in actively inflamed colitis tissue. Mucosal Immunol. 2014;7(1):124–33.

    Article  Google Scholar 

  41. Zenewicz LA, Yancopoulos GD, Valenzuela DM, et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008;29(6):947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luci C, Reynders A, Ivanov II, et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol. 2009;10(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  43. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157(3):1261–70.

    CAS  PubMed  Google Scholar 

  45. Monteleone G, Biancone L, Marasco R, et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology. 1997;112(4):1169–78.

    Article  CAS  PubMed  Google Scholar 

  46. Okazawa A, Kanai T, Watanabe M, et al. Th1-mediated intestinal inflammation in Crohn’s disease may be induced by activation of lamina propria lymphocytes through synergistic stimulation of interleukin-12 and interleukin-18 without T cell receptor engagement. Am J Gastroenterol. 2002;97(12):3108–17.

    Article  CAS  PubMed  Google Scholar 

  47. Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351(20):2069–79.

    Article  CAS  PubMed  Google Scholar 

  48. Abraham C, Cho J. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm Bowel Dis. 2009;15(7):1090–100. Review.

    Article  PubMed  Google Scholar 

  49. Kamada N, Hisamatsu T, Okamoto S, et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest. 2008;118(6):2269–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fuss IJ, Becker C, Yang Z, et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006;12(1):9–15.

    Article  PubMed  Google Scholar 

  51. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113(10):1490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–78.

    Article  CAS  PubMed  Google Scholar 

  53. Himmel ME, Hardenberg G, Piccirillo CA, et al. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology. 2008;125(2):145–53. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Makita S, Kanai T, Oshima S, et al. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J Immunol. 2004;173(5):3119–30.

    Article  CAS  PubMed  Google Scholar 

  55. Franke A, Balschun T, Karlsen TH, et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet. 2008;40(11):1319–23.

    Article  CAS  PubMed  Google Scholar 

  56. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuji M, Komatsu N, Kawamoto S, et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science. 2009;323(5920):1488–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nagaishi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nagaishi, T., Watanabe, M. (2017). Paradigm of T Cell Differentiation in IBD. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Cham. https://doi.org/10.1007/978-3-319-33703-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33703-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33701-2

  • Online ISBN: 978-3-319-33703-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics