Skip to main content

Autophagy and Endoplasmic Reticulum Stress

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

Hypomorphic autophagy, a fundamental cellular catabolic process, has emerged as a key disease-specific theme associated with genetic risk for Crohn’s disease (CD), based on the original discovery of a nonsynonymous coding variation in the autophagy gene ATG16L1 and further autophagy risk genes discovered since then. Endoplasmic reticulum (ER) stress, a consequence of protein misfolding in the ER, is commonly observed in the intestinal epithelium of patients with CD and ulcerative colitis, and elicits a compensatory response, the Unfolded Protein response (UPR). Genes involved in the UPR, including XBP1, have been associated with risk for inflammatory bowel disease (IBD). The UPR and autophagy are closely intertwined, with autophagy serving a compensatory function to restrain ER stress. In vivo model systems have demonstrated that impairment of autophagy function in the context of unrestrained ER stress leads to spontaneous ileitis that closely phenocopies ileal CD and that originates from the intestinal epithelium, providing a framework on how hypomorphic autophagy may trigger disease in patients carrying the ATG16L1 T300A risk variant in the context of yet unknown environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molodecky NA et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54 e42; quiz e30.

    Google Scholar 

  4. Treton X et al. Altered endoplasmic reticulum stress affects translation in inactive colon tissue from patients with ulcerative colitis. Gastroenterology. 2011;141:1024–35.

    Article  CAS  PubMed  Google Scholar 

  5. Shkoda A et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology. 2007;132:190–207.

    Article  CAS  PubMed  Google Scholar 

  6. Kaser A et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134:743–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article  CAS  PubMed  Google Scholar 

  8. Bertolotti A et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest. 2001;107:585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.

    Article  CAS  PubMed  Google Scholar 

  10. Adolph TE et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503:272–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cao SS et al. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology. 2013;144(5):989–1000.e6.

    Google Scholar 

  12. Park SW et al. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci U S A. 2009;106:6950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao F et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev Biol. 2010;338:270–9.

    Article  CAS  PubMed  Google Scholar 

  14. Namba T et al. Positive role of CCAAT/enhancer-binding protein homologous protein, a transcription factor involved in the endoplasmic reticulum stress response in the development of colitis. Am J Pathol. 2009;174:1786–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heazlewood CK et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 2008;5:e54.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hampe J et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.

    Article  CAS  PubMed  Google Scholar 

  17. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murthy A et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature. 2014;506:456–62.

    Article  CAS  PubMed  Google Scholar 

  19. Hugot JP et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  20. Ogura Y et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  CAS  PubMed  Google Scholar 

  21. Travassos LH et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11:55–62.

    Article  CAS  PubMed  Google Scholar 

  22. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139:1630–41, 1641 e1631–2.

    Google Scholar 

  23. Parkes M et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39:830–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 2006;313:1438–41.

    Article  CAS  PubMed  Google Scholar 

  25. Singh SB et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol. 2010;12:1154–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ellinghaus D et al. Association between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and functional studies. Gastroenterology. 2013;145:339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Till A et al. Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy. 2013;9:1256–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewis PA, Manzoni C. LRRK2 and human disease: a complicated question or a question of complexes? Sci Signal. 2012;5:pe2.

    Article  PubMed  Google Scholar 

  29. Cadwell K et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cadwell K et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kobayashi KS et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731–4.

    Article  CAS  PubMed  Google Scholar 

  32. Wehkamp J et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102:18129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Q et al. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat Immunol. 2015;16:918–26.

    Article  CAS  PubMed  Google Scholar 

  34. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.

    Article  CAS  PubMed  Google Scholar 

  35. Salzman NH et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11:76–83.

    Article  CAS  PubMed  Google Scholar 

  36. Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol. 2010;26:564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elinav E et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ivanov II et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deuring JJ et al. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn’s disease. Gut. 2013;63:1081–91.

    Google Scholar 

  40. Reimold AM et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412:300–7.

    Article  CAS  PubMed  Google Scholar 

  41. Iwakoshi NN et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4:321–9.

    Article  CAS  PubMed  Google Scholar 

  42. Martinon F, Chen X, Lee AH, Glimcher LH. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol. 2010;11:411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Richardson CE, Kooistra T, Kim DH. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature. 2010;463:1092–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaser A, Adolph TE, Blumberg RS. The unfolded protein response and gastrointestinal disease. Semin Immunopathol. 2013;35:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marchiando AM et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe. 2013;14:216–24.

    Article  CAS  PubMed  Google Scholar 

  46. Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS One. 2008;3:e3391.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol. 2010;12:99–113.

    Article  CAS  PubMed  Google Scholar 

  48. Darfeuille-Michaud A et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–21.

    Google Scholar 

  49. Saitoh T et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–8.

    Article  CAS  PubMed  Google Scholar 

  50. Schuster C et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity. 2015;42:942–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455:396–400.

    Article  CAS  PubMed  Google Scholar 

  52. Wildenberg ME et al. Autophagy attenuates the adaptive immune response by destabilizing the immunologic synapse. Gastroenterology. 2012;142:1493–503 e1496.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Kaser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaser, A. (2017). Autophagy and Endoplasmic Reticulum Stress. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Cham. https://doi.org/10.1007/978-3-319-33703-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33703-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33701-2

  • Online ISBN: 978-3-319-33703-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics