Skip to main content

Tradition and Innovation: Making the Neuropsychological Evaluation a More Powerful Tool

  • Chapter
  • First Online:
Large-Scale Brain Systems and Neuropsychological Testing

Abstract

Most neuropsychological tests are blatantly explicit. By this, we mean that most of the tests we administer focus upon the concept and assumptions of conscious cognitive control. In addition, many of these tasks appear to be artificial, and the results of these measures are difficult to correlate with day-to-day activities. For example, during the course of the day, people are not repeating digits forwards and backwards; they are not sorting cards into categories or solving “tower” tests; they are not connecting circles in numerical order with a pencil line, etc. Nevertheless, based upon interpretations of test results, we attempt to identify symptoms and diagnose pathology. The neuropsychologist then attempts to predict how the patient may present the in the “real world,” making inferences from test interpretation. From this, the clinician attempts to devise meaningful interventions that will support the patient in treating and/or compensating for their deficiencies; however, many of the tasks that are administered in a neuropsychological battery are not practical, and thus performance on the measure may not translate or generalize well in terms of a patient’s neurobehavioral presentation outside of the clinical setting. Some tests utilize game-like formats. Other tasks are administered conveying academic overtones, and still other tasks are administered within a question-answer format. So the inferences and predictions we make are always indirect.

“Concentration: put all your eggs in one basket, and watch that basket.”

Andrew Carnegie

“Become a possibilitarian. No matter how dark things seem to be or actually are, raise your sights and see possibilities- always see them, for they’re always there.”

Norman Vincent Peale

“Truth has no special time of its own. Its hour is now- always.”

Albert Schweitzer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York, NY: Oxford University Press.

    Google Scholar 

  2. Hassin, R. R., et al. (2009). Implicit working memory. Consciousness and Cognition, 18(3), 665–678.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Strauss, E., Sherman, E. M. S., Spreen, O., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. Oxford, England: Oxford University Press.

    Google Scholar 

  4. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.

    Article  PubMed  Google Scholar 

  5. Singer, W. (2001). Consciousness and the binding problem. The Annals of the New York Academy of Sciences, 929, 123–146.

    Article  Google Scholar 

  6. Shadlen, M. N., & Movshon, J. A. (1999). Synchrony unbound: A critical evaluation of the temporal binding hypothesis. Neuron, 24(1), 67–77. 111–125.

    Article  PubMed  Google Scholar 

  7. Bertenthal, B. I. (1996). Origins and early development of perception, action, and representation. Annual Review of Psychology, 47, 431–459.

    Article  PubMed  Google Scholar 

  8. Koziol, L. F., Barker, L. A., & Jansons, L. (2015). Attention and other constructs: Evolution or revolution? Applied Neuropsychology: Child, 4(2), 123–131.

    Article  Google Scholar 

  9. Koziol, L. F., Barker, L. A., & Jansons, L. (2015). Conceptualizing developmental language disorders: A theoretical framework including the role of the cerebellum in language-related functioning. In P. Marien & M. Manto (Eds.), The linguistic cerebellum. San Diego, CA: Academic.

    Google Scholar 

  10. Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45, 801–814.

    Article  PubMed  Google Scholar 

  11. Koziol, L. F., Barker, L. A., Hrin, S., & Joyce, A. W. (2014). Large-scale brain systems and subcortical relationships: Practical applications. Applied Neuropsychology: Child, 3(4), 264–273.

    Article  Google Scholar 

  12. Ito, M. (2011). The cerebellum: Brain for an implicit self. Upper Saddle River, NJ: FT Press.

    Google Scholar 

  13. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89(4), 1009–1023.

    Article  Google Scholar 

  14. Cockburn, J., & Frank, M. J. (2011). Reinforcement learning, conflict monitoring, and cognitive control: An integrative model of cingulate-striatal interactions and the ERN. In R. B. Mars, J. Sallet, M. F. S. Rushworth, & N. Yeung (Eds.), Neural basis of motivational and cognitive control. Cambridge, MA: MIT Press.

    Google Scholar 

  15. Miller, R. (2008). A theory of basal ganglia and their disorders. Boca Raton, FL: CRC Press.

    Google Scholar 

  16. Doll, B., & Frank, M. J. (2009). The basal ganglia in reward and decision making: computational models and empirical studies. In J.-C. Dreher & L. Tremblay (Eds.), Handbook of reward and decision making (pp. 399–425). Oxford: Academic Press.

    Chapter  Google Scholar 

  17. McCaffrey, R. J., Duff, K., & Westervelt, H. J. (2000). Practitioner’s guide to evaluating change with neuropsychological assessment instruments. New York, NY: Kluwer Academic/Plenum.

    Google Scholar 

  18. Watkins, M. W., & Smith, L. G. (2013). Long-term stability of the Wechsler Intelligence Scale for Children—Fourth Edition. Psychological Assessment, 25(2), 477–483.

    Article  PubMed  Google Scholar 

  19. Milberg, W. P., Hebben, N., & Kaplan, E. (1996). The Boston process approach to neuropsychological assessment. In I. Grant & K. M. Adams (Eds.), Neurop.sychological assessment of neuropsychiatric disorders (pp. 58–80). New York, NY: Oxford University Press.

    Google Scholar 

  20. Squire, L. R., & Shimamura, A. P. (1996). The neuropsychology of memory dysfunction and its assessment. In I. Grant & K. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorders (pp. 232–262). New York, NY: Oxford University Press.

    Google Scholar 

  21. Banich, M. T., & Compton, R. J. (2011). Cognitive neuroscience (3rd ed.). Belmont, CA: Wadsworth, Cengage Learning.

    Google Scholar 

  22. Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system (D-KEFS). San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  23. Saint-Cyr, J. A., & Taylor, A. E. (1992). The mobilization of procedural learning: The “key signature” of the basal ganglia. In L. R. Squire & N. Butters (Eds.), The neuropsychology of memory (2nd ed., pp. 188–202). New York, NY: Guilford Press.

    Google Scholar 

  24. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning test (2nd ed.). San Antonio, TX: Psychological Corporation.

    Google Scholar 

  25. Blumenfeld, H. (2010). Neuroanatomy through clinical cases (2nd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  26. Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16(1), 17–26.

    Article  PubMed  Google Scholar 

  27. Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21, 1761–1770.

    Article  PubMed  Google Scholar 

  28. Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition: Implications for neuropsychological assessment. New York, NY: Springer.

    Book  Google Scholar 

  29. de Mattos, V. F., Graziadio, C., Machado Rosa, R. F., Lenhardt, R., Alves, R. P., Trevisan, P., … Zen, P. R. (2014). Gómez-López-Hernández syndrome in a child born to consanguineous parents: new evidence for an autosomal-recessive pattern of inheritance? Pediatric Neurology, 50(6), 612–615.

    Google Scholar 

  30. Ansorge, U., Kunde, W., & Kiefer, M. (2014). Unconscious vision and executive control: How unconscious processing and conscious action control interact. Consciousness and Cognition, 67, 268–287.

    Article  Google Scholar 

  31. Méndez, J. C., Pérez, O., Prado, L., & Merchant, H. (2014). Linking perception, cognition, and action: Psychophysical observations and neural network modelling. PLoS One, 9(7), e102553. doi:10.1371/journal.pone.0102553.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ridderinkhof, K. R. (2014). Neurocognitive mechanisms of perception-action coordination: A review and theoretical integration. Neuroscience & Biobehavioral Reviews, 46, 3–29. doi:10.1016/j.neubiorev.2014.05.008.

    Article  Google Scholar 

  33. Denckla, M. B. (1996). A theory and model of executive function: A neuropsychological perspective. In G. R. Lyon & N. A. Krasnegor (Eds.), Attention, memory, and executive function (pp. 263–278). Baltimore, MD: Paul H. Brookes.

    Google Scholar 

  34. Osterrieth, P. (1944). Le test de copie d’une figure complexe. Archieves de Psychologie, 30, 206–356.

    Google Scholar 

  35. Shorr, J. S., Delis, D. C., & Massman, P. J. (1992). Memory for the Rey-Osterrieth figure: Perceptual clustering, encoding, and storage. Neuropsychology, 6, 43–50.

    Article  Google Scholar 

  36. Weber, R., Riccio, C., & Cohen, M. (2013). Does Rey complex figure copy performance measure executive function in children? Applied Neuropsychology: Child, 2, 6–12.

    Article  Google Scholar 

  37. Darki, F., & Klingberg, T. (2015). The role of fronto-parietal and fronto-striatal networks in the development of working memory: A longitudinal study. Cerebral Cortex, 25(6), 1587–1595.

    Article  PubMed  Google Scholar 

  38. Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 1348–1355.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cisek, P., & Pastor-Bernier, A. (2014). On the challenges and mechanisms of embodied decisions. Philosophical Transactions of the Royal Society: Series B. Biological Sciences, 369(1655), 20130479. doi:10.1098/rstb.2013.0479.

    Google Scholar 

  40. Bryan, K. L., & Hale, J. B. (2001). Differential effects of left and right cerebral vascular accidents on language competency. Journal of the International Neuropsychological Society, 7, 655–664.

    Article  PubMed  Google Scholar 

  41. Vakalopoulos, C. (2013). The developmental basis of visuomotor capabilities and the causal nature of motor clumsiness to cognitive and empathetic dysfunction. Cerebellum, 12(2), 212–223.

    Article  PubMed  Google Scholar 

  42. Mann, V. (1998). Language problems: A key to early reading problems. In B. Wong (Ed.), Learning about learning disabilities (pp. 213–228). Orlando, FL: Academic Press.

    Google Scholar 

  43. Miller, C. J., Sanchez, J., & Hynd, G. W. (2003). Neurological correlates of reading disabilities. In L. Swanson & S. Graham (Eds.), Handbook of research on learning disabilities (pp. 242–255). New York, NY: Guilford Press.

    Google Scholar 

  44. Geary, D. C. (2013). Learning disabilities in mathematics: Recent advances. In H. L. Swanson, K. Harris, & S. Graham (Eds.), Handbook of learning disabilities (2nd ed., pp. 239–255). New York, NY: Guilford Press.

    Google Scholar 

  45. Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H., … Nuerk, H.-C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, 516. doi:10.3389/fpsyg.2013.00516.

  46. Feifer, S. G., & Della Toffalo, D. A. (2005). The neuropsychology of mathematics: Diagnosis and intervention. Middletown, MD: School Neuropsych Press.

    Google Scholar 

  47. Voogd, J., Schraa-Tam, C. K. L., van der Geest, J. N., & De Zeeuw, C. I. (2010). Visuomotor cerebellum in human and nonhuman primates. Cerebellum, 11(2), 392–410.

    Article  PubMed Central  Google Scholar 

  48. Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., & Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. American Journal of Psychiatry, 169, 1038–1055.

    Google Scholar 

  49. Koziol, L. F., Budding, D. E., & Chidekel, D. (2013). ADHD as a model of brain-behavior relationships. New York, NY: Springer.

    Google Scholar 

  50. Koziol, L. F. (2014). The myth of executive functioning: Missing elements in conceptualization, evaluation, and assessment. New York, NY: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koziol, L.F., Beljan, P., Bree, K., Mather, J., Barker, L. (2016). Tradition and Innovation: Making the Neuropsychological Evaluation a More Powerful Tool. In: Large-Scale Brain Systems and Neuropsychological Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-28222-0_6

Download citation

Publish with us

Policies and ethics