Skip to main content

Early CABG Failure

  • Chapter
  • First Online:
Coronary Graft Failure
  • 1043 Accesses

Abstract

Coronary artery bypass grafting (CABG) is relatively safe procedure with estimated mortality rate ranging 1 % through 5 %. Early and late results of CABG are determined by performance of bypass grafts and progression rate in the native coronary arteries. Although perioperative myocardial infarction (PMI) noted in approximately 2.5 % of CABG patients may be either graft or non-graft-related, the latter one dominates. Predominant reason of graft-related PMI is thrombus formation. In this chapter, mechanisms promoting the development of thrombus in bypass grafts and strategies to prevent it are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization. The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014. doi:10.1093/eurheartj/ehu278.

    Google Scholar 

  2. Javaid A, Steinberg DH, Buch AN, et al. Outcomes of coronary artery bypass grafting versus percutaneous coronary intervention with drug-eluting stents for patients with multivessel coronary artery disease. Circulation. 2007;116(11 Suppl):I200–6.

    CAS  PubMed  Google Scholar 

  3. Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol Cell Biol. 2006;84:115–24.

    Article  CAS  PubMed  Google Scholar 

  4. Virani SS, Mendoza CE, Arora H, et al. Clinical significance, angiographic characteristics, and short-term outcomes in 30 patients with early coronary artery graft failure. Neth Heart J. 2009;17:13–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rasmussen C, Thiis JJ, Clemmensen P, et al. Significance and management of early graft failure after coronary artery bypass grafting: feasibility and results of acute angiography and re-re-vascularization. Eur J Cardiothorac Surg. 1997;12:847–52.

    Article  CAS  PubMed  Google Scholar 

  6. Favaloro RG, Effler DB, Groves LK, et al. Combined simultaneous procedures in the surgical treatment of coronary artery disease. Ann Thorac Surg. 1969;8:20–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lamy A, Devereaux PJ, Prabhakaran D, et al.; CORONARY Investigators. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366:1489–97.

    Google Scholar 

  8. Shroyer AL, Grover FL, Hattler B, et al.; Veterans Affairs Randomized On/Off Bypass (ROOBY) Study Group. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361:1827–37.

    Google Scholar 

  9. Taggart DP, Altman DG, Gray AM, et al; on behalf of the ART Investigators. Effects of on-pump and off-pump surgery in the Arterial Revascularization Trial. Eur J Cardiothoracic Surg. 2015;47:1059–65.

    Google Scholar 

  10. Shroyer AL, Hattler B, Wagner TH, et al.; VA #517 Randomized On/Off Bypass (ROOBY) Study Group. Comparing off-pump and on-pump clinical outcomes and costs for diabetic cardiac surgery patients. Ann Thorac Surg. 2014;98:38–44.

    Google Scholar 

  11. Miśkowiec DL, Walczak A, Jaszewski R, et al. Independent predictors of early mortality after CABG in single centre experience – does the gender matter? Kardiol Pol. 2015;73:109–17.

    Google Scholar 

  12. Nalysnyk L, Fahrbach K, Reynolds MW, et al. Adverse events in coronary artery bypass graft (CABG) trials: a systematic review and analysis. Heart. 2003;89:767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. ElBardissi AW, Aranki SF, Sheng S, et al. Trends in isolated coronary artery bypass grafting: an analysis of the Society of Thoracic Surgeons adult cardiac surgery database. J Thorac Cardiovasc Surg. 2012;143:273–81.

    Article  PubMed  Google Scholar 

  14. Nashef SA, Roques F, Sharples LD, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41:734–44.

    Article  PubMed  Google Scholar 

  15. Bridgewater B, Neve H, Moat N, et al. Predicting operative risk for coronary artery surgery in the United Kingdom: a comparison of various risk prediction algorithms. Heart. 1998;79:350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nashef SA, Roques F, Michel P, et al. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg. 1999;16:9–13.

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien SM, Filardo G, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 1 – coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88(1 Suppl):S2–22.

    PubMed  Google Scholar 

  18. Bernstein AD, Parsonnet V. Bedside estimation of risk as an aid for decision-making in cardiac surgery. Ann Thorac Surg. 2000;69:823–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kouchoukos NT, Ebert PA, Grover FL, et al. Report of the ad hoc committee on risk factors for coronary artery bypass surgery. Ann Thorac Surg. 1988;45:348–9.

    Article  CAS  PubMed  Google Scholar 

  20. Clark RE. It is time for a national cardiothoracic surgical data base. Ann Thorac Surg. 1989;48:755–6.

    Article  CAS  PubMed  Google Scholar 

  21. Mandegar MH, Marzban M, Lebaschi AH, et al. Gender influence on hospital mortality after coronary artery bypass surgery. Asian Cardiovasc Thorac Ann. 2008;16:231–5.

    Article  PubMed  Google Scholar 

  22. Vaccarino V, Abramson JL, Veledar E, et al. Sex differences in hospital mortality after coronary artery bypass surgery: evidence for a higher mortality after coronary artery bypass surgery. Circulation. 2002;105:1176–81.

    Article  PubMed  Google Scholar 

  23. Ahmed WA, Tully PJ, Psych M, et al. Female sex as an independent predictor of morbidity and survival after isolated coronary artery bypass grafting. Ann Thorac Surg. 2011;92:59–67.

    Article  PubMed  Google Scholar 

  24. Holzmann MJ, Ahnve S, Hammar N, et al. Creatinine clearance and risk of early mortality in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2005;130:746–52.

    PubMed  Google Scholar 

  25. Cooper WA, O’Brien SM, Thourani VH, et al. Impact of renal dysfunction on outcomes of coronary artery bypass surgery: results from the Society of Thoracic Surgeons National Adult Cardiac Database. Circulation. 2006;113:1063–70.

    Article  PubMed  Google Scholar 

  26. Holzmann MJ, Hammar N, Ahnve S, et al. Renal insufficiency and long‐term mortality and incidence of myocardial infarction in patients undergoing coronary artery bypass grafting. Eur Heart J. 2007;28:865–71.

    Article  PubMed  Google Scholar 

  27. Holzmann MJ, Ahlbäck E, Jeppsson A, et al. Renal dysfunction and long‐term risk of ischemic and hemorrhagic stroke following coronary artery bypass grafting. Int J Cardiol. 2013;168:1137–42.

    Article  PubMed  Google Scholar 

  28. Al-Ruzzeh S, Nakamura K, Athanasiou T, et al. Does off-pump coronary artery bypass (OPCAB) surgery improve the outcome in high-risk patients?: a comparative study of 1398 high-risk patients. Eur J Cardiothorac Surg. 2003;23:50–5.

    Article  PubMed  Google Scholar 

  29. Podgoreanu MV, White WD, Morris RW, et al. Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery. Circulation. 2006;114:I275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abramov D, Tamariz MG, Sever JY, et al. The influence of gender on the outcome of coronary artery bypass surgery. Ann Thorac Surg. 2000;70:800–5.

    Article  CAS  PubMed  Google Scholar 

  31. Laflamme M, DeMey N, Bouchard D, et al. Management of early postoperative coronary artery bypass graft failure. Interact Cardiovasc Thorac Surg. 2012;14:452–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Davierwala PM, Verevkin A, Leontyev S, et al. Impact of expeditious management of perioperative myocardial ischemia in patients undergoing isolated coronary artery bypass surgery. Circulation. 2013;128 Suppl 1:S226–34.

    Article  PubMed  Google Scholar 

  33. Steuer J, Hörte LG, Lindahl B, Ståhle E. Impact of perioperative myocardial injury on early and long-term outcome after coronary artery bypass grafting. Eur Heart J. 2002;23:1219–27.

    Article  CAS  PubMed  Google Scholar 

  34. Landesberg G, Beattie WS, Mosseri M, et al. Perioperative myocardial infarction. Circulation. 2009;119:2936–44.

    Article  PubMed  Google Scholar 

  35. Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. J Am Coll Cardiol. 2007;50:2173–95.

    Article  PubMed  Google Scholar 

  36. Adams 3rd JE, Sicard GA, Allen BT, et al. Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med. 1994;330:670–4.

    Article  PubMed  Google Scholar 

  37. Thielmann M, Massoudy P, Schmermund A, et al. Diagnostic discrimination between graft-related and non-graft-related perioperative myocardial infarction with cardiac troponin I after coronary artery bypass surgery. Eur Heart J. 2005;26:2440–7.

    Article  CAS  PubMed  Google Scholar 

  38. Steuer J, Bjerner T, Duvernoy O, et al. Visualisation and quantification of perioperative myocardial infarction after coronary artery bypass surgery with contrast-enhanced magnetic resonance imaging. Eur Heart J. 2004;25:1293–9.

    Article  PubMed  Google Scholar 

  39. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined – a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69.

    Article  CAS  PubMed  Google Scholar 

  40. Erbel R, Heusch G. Brief review: coronary microembolization. J Am Coll Cardiol. 2000;36:22–4.

    Article  CAS  PubMed  Google Scholar 

  41. Thielman M, Dorge H, Martin C, et al. Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res. 2002;19:807–13.

    Article  Google Scholar 

  42. Califf RM, Abdelmeguid AE, Kuntz RE, et al. Myonecrosis after revascularization procedures. J Am Coll Cardiol. 1998;31:241–51.

    Article  CAS  PubMed  Google Scholar 

  43. Skyschally A, Haude M, Dorge H, et al. Glucocorticoid treatment prevents progressive myocardial dysfunction resulting from experimental coronary embolization. Circulation. 2004;109:2337–42.

    Article  CAS  PubMed  Google Scholar 

  44. Rosenfeldt FL, He GW, Buxton BF, Angus JA. Pharmacology of coronary artery bypass grafts. Ann Thorac Surg. 1999;67:878–88.

    Article  CAS  PubMed  Google Scholar 

  45. Goldman S, Zadina K, Moritz T, et al. Long-term patency of sapenous vein and left internal mammary artery after coronary artery bypass surgery: results from the Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44:2149–56.

    Article  PubMed  Google Scholar 

  46. Mehta D, Izzat MB, Bryan AJ, et al. Towards the prevention of vein graft failure. Int J Cardiol. 1997;62 Suppl 1:S55–63.

    Article  PubMed  Google Scholar 

  47. Fitzgibbon GM, Kafka HP, Leach AJ, et al. Coronary artery bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28:616–26.

    Article  CAS  PubMed  Google Scholar 

  48. Tsui JC, Dashwood MR. Recent strategies to reduce vein graft occlusion: a need to limit the effect of vascular damage. Eur J Vasc Endovasc Surg. 2002;23:202–8.

    Article  CAS  PubMed  Google Scholar 

  49. Parang P, Arora R. Coronary vein graft disease: pathogenesis and prevention. Can J Cardiol. 2009;25:e57–62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Canos DA, Mintz GS, Berzingi C, et al. Clinical, angiographic and intravascular ultrasound characteristics of early saphenous vein graft failure. J Am Coll Cardiol. 2004;44:53–6.

    Article  PubMed  Google Scholar 

  51. Le May MR, Labinaz M, Marquiz JF, et al. Predictors of long-term outcome after stent implantation in a saphenous vein graft. Am J Cardiol. 1999;83:681–8.

    Article  PubMed  Google Scholar 

  52. Lip GY, Blann AD. Thrombogenesis, atherogenesis and angiogenesis in vascular disease: a new ‘vascular triad’. Ann Med. 2004;36:119–25.

    Article  CAS  PubMed  Google Scholar 

  53. Nowicki M, Buczkowski P, Miskowiak B, et al. Immunocytochemical study on endothelial integrity of saphenous vein grafts harvested by minimally invasive surgery with the use of vascular mayo stripers. A randomized controlled trial. Eur J Vasc Endovasc Surg. 2004;27:244–50.

    Article  CAS  PubMed  Google Scholar 

  54. Rousou LJ, Taylor KB, Lu XG, et al. Saphenous vein conduits harvested by endoscopic technique exhibit structural and functional damage. Ann Thorac Surg. 2009;87:62–70.

    Article  PubMed  Google Scholar 

  55. Lopes R, Hafley G, Allen KB, et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. N Engl J Med. 2009;361:235–44.

    Article  CAS  PubMed  Google Scholar 

  56. McGeachie JK, Meagher S, Prendergast FJ. Vein-to-artery grafts: the long-term development of neo-intimal hyperplasia and its relationship to vasa vasorum and sympathetic innervation. Aust N Z J Surg. 1989;59:59–65.

    Article  CAS  PubMed  Google Scholar 

  57. de Graaf R, Tintu A, Stassen F, Kloppenburg G, Bruggeman C, Rouwet E. N-acetylcysteine prevents neointima formation in experimental venous bypass grafts. Br J Surg. 2009;96:941–50.

    Article  PubMed  Google Scholar 

  58. Cook JM, Cook CD, Marlar R, et al. Thrombomodulin activity in human saphenous vein grafts prepared for coronary artery bypass. J Vasc Surg. 1991;14:147–51.

    Article  CAS  PubMed  Google Scholar 

  59. Peykar S, Angiolillo DJ, Bass TA, Costa MA. Saphenous vein graft disease. Minerva Cardioangiol. 2004;52:379–90. Viaro F, Carlotti CG Jr, Rodrigues AJ, et al. Endothelium dysfunction caused by acute pressure distension of human saphenous vein used for myocardial revascularization. Rev Bras Cir Cardiovasc. 2007;22:169–75.

    CAS  PubMed  Google Scholar 

  60. Wilbring M, Ebner A, Schoenemann K, et al. Heparinized blood better preserves cellular energy charge and vascular functions of intraoperatively stored saphenous vein grafts in comparison to isotonic sodium-chloride-solution. Clin Hemorheol Microcirc. 2013;55:445–55.

    CAS  PubMed  Google Scholar 

  61. Verrier ED, Boyle Jr EM. Enthelial cell injury in cardiovascular surgery. Ann Thorac Surg. 1996;62:915–22.

    Article  CAS  PubMed  Google Scholar 

  62. Lee MS, David EM, Makkar RR, et al. Molecular and cellular basis of restenosis after percutaneous coronary intervention: the intertwining roles of platelets, leucocytes, and the coagulation-fibrinolysis system. J Pathol. 2004;203:861–70.

    Article  CAS  PubMed  Google Scholar 

  63. Ishiwata S, Tukada T, Nakanishi S, et al. Postangioplasty restenosis: platelet activation and the coagulation-fibrinolysis system as possible factors in the pathogenesis of restenosis. Am Heart J. 1997;133:387–92.

    Article  CAS  PubMed  Google Scholar 

  64. Davies MG, Hagen PO. Pathobiology of intimal hyperplasia. Br J Surg. 1994;81:1254–69.

    Article  CAS  PubMed  Google Scholar 

  65. Thatte HS, Khuri SF. The coronary artery bypass cnduit. I. Intraoperative endothelial injury and its implication on graft patency. Ann Thorac Surg. 2001;72:S2245–52.

    Article  CAS  PubMed  Google Scholar 

  66. Angelini GD, Bryan AJ, Williams HM, et al. Distension promotes latelet and leukocyte adhesion and reduces short-term patency in pig atriovenous bypass graft. J Thorac Cardiovasc Surg. 1990;99:433–9.

    CAS  PubMed  Google Scholar 

  67. Arazi HC, Doiny DG, Torcivia RS, et al. Impaired anti-platelet effect of aspirin, inflammation an platelet turnover in cardiac surgery. Interact Cardiovasc Thorac Surg. 2010;10:863–7.

    Article  PubMed  Google Scholar 

  68. Daňová K, Pechaň I, Olejárová I, et al. Natriuretic peptides and endothelin-1 in patients undergoing coronary artery bypass grafting. Gen Physiol Biophys. 2007;26:194–9.

    PubMed  Google Scholar 

  69. Moor E, Hamsten A, Blomback M, et al. Haemostatic factors and inhibitors and coronary bypass grafting: preoperative alterations and relations to graft occlusion. Thromb Haemost. 1994;72:335–42.

    CAS  PubMed  Google Scholar 

  70. Parolari A, Mussoni L, Frigerio M, et al. Increased prothrombotic state lasting as long as one month after on-pump and off-pump coronary surgery. J Thorac Cardiovasc Surg. 2005;130:303–8.

    Article  PubMed  Google Scholar 

  71. Undar A, Vaughn WK, Calhoon JH. The effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on blood viscoelasticity and cerebral blood flow in a neonatal piglet model. Perfusion. 2000;15:121–8.

    Article  CAS  PubMed  Google Scholar 

  72. Holmvang L, Jurlander B, Rasmussen C, et al. Use of biochemical markers of infarction for diagnosing perioperative myocardial infarction and early graft occlusion after coronary artery bypass surgery. Chest. 2002;121:103–17.

    Article  CAS  PubMed  Google Scholar 

  73. Komori K, Yamamura S, Ishida M, et al. Acceleration of impairment of endothelium-dependent responses under poor runoff conditions in canine autogenous vein grafts. Eur J Vasc Endovasc Surg. 1997;14:475–81.

    Article  CAS  PubMed  Google Scholar 

  74. Rupprecht HJ, Hamm C, Ischinger T, et al. Angiographic follow-up results of a randomized study on angioplasty versus bypass surgery (GABI trial). GABI Study Group. Eur Heart J. 1996;17:1192–8.

    Article  CAS  PubMed  Google Scholar 

  75. Roth JA, Cukingnan RA, Brown BG, et al. Factors influencing patency of saphenous vein grafts. Ann Thorac Surg. 1979;28:176–83.

    Article  CAS  PubMed  Google Scholar 

  76. Cataldo G, Braga M, Pirotta N, et al. Factors influencing 1-year patency of coronary artery saphenous vein grafts: Studio Indobufene nel Bypass Aortocoronarico (SINBA). Circulation. 1993;88(Suppl II):II-93–8.

    CAS  Google Scholar 

  77. Tonino PA, Fearon WF, De Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.

    Article  PubMed  Google Scholar 

  78. Dashwood MR, Savage K, Tsui JC, et al. Retaining perivascular tissue of human saphenous vein grafts protects against surgical and distension-induced damage and preserves endothelial nitric oxide synthase and nitrix oxide synthase activity. J Thorac Cardiovasc Surg. 2009;138:334–40.

    Article  CAS  PubMed  Google Scholar 

  79. Stein PD, Dalen JE, Gldman S, et al. Antithrombotic therapy in patients with saphenus vein and internal mammary artery bypass grafts. Chest. 1995;108:424S–30.

    Article  CAS  PubMed  Google Scholar 

  80. Souza DS, Johansson B, Bojo L, et al. Harvesting the saphenous vein with surrounding tissue for CABG provides long-term graft patency comparable to the left internal thoracic artery: results of a randomized longitudinal trial. J Thorac Cardiovasc Surg. 2006;132:373–8.

    Article  PubMed  Google Scholar 

  81. Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition and prevention. Circulation. 1998;97:916–31.

    Article  CAS  PubMed  Google Scholar 

  82. Verstraete M, Brown BG, Chesebro JH, et al. Evaluation of antiplatelet agents in the prevention of aorto-coronary bypass occlusion. Eur Heart J. 1986;7:4–13.

    CAS  PubMed  Google Scholar 

  83. Goldman S, Copeland J, Moritz T, et al. Improvement in early saphenous vein graft patency after coronary artery bypass surgery with antiplatelet therapy: results of a Veteran Administration Cooperative Study. Circulation. 1988;6:1324–32.

    Article  Google Scholar 

  84. Ratnatunga CP, Edmondson SF, Ree GM, et al. High-dose aspirin inhibits shear-induced platelet reaction involving thrombin generation. Circulation. 1992;85:1077–82.

    Article  CAS  PubMed  Google Scholar 

  85. Goldman S, Copeland J, Moritz T, et al. Saphenous vein graft patency 1 year after coronary artery bypass surgery and effects of antiplatelet therapy. Results of a Veterans Administration Cooperative Study. Circulation. 1989;80:1190–7.

    Article  CAS  PubMed  Google Scholar 

  86. Torsney E, Mayr U, Zou Y, et al. Thrombosis and neointima formation in vein grafts are inhibited by locally applied aspirin through endothelial protection. Circ Res. 2004;94:1466–73.

    Article  CAS  PubMed  Google Scholar 

  87. Kim AY, Walinsky PL, Kolodgie FD, et al. Early loss of thrombomodulin expression impairs vein graft thromboresistance: implications for vein graft failure. Circ Res. 2002;90:205–12.

    Article  CAS  PubMed  Google Scholar 

  88. Shukla N, Angelini GD, Wan I, et al. Potential role of nitroaspirin in the treatment of vein graft failure. Ann Thorac Surg. 2003;75:1437–42.

    Article  PubMed  Google Scholar 

  89. Sparatore A, Perrino E, Tazzari V, et al. Pharmacological profile of a novel H2S-releasing aspirin. Free Radic Biol Med. 2009;46:586–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Perek MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perek, B. (2016). Early CABG Failure. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics