Skip to main content

Alternative Interventions Against Neglected Tropical Diseases in SSA: Vector Control

  • Chapter
  • First Online:
Neglected Tropical Diseases - Sub-Saharan Africa

Part of the book series: Neglected Tropical Diseases ((NTD))

Abstract

Vector control is one of the strategies recommended by World Health Organization for the control and prevention of the neglected tropical diseases (NTDs) apart from preventive chemotherapy, intensified case management, provision of safe water, sanitation and hygiene, and veterinary public health. Although an integrated approach based on a combination of strategies or one strategy targeting a group of diseases is the preferred approach, the current policy for the global elimination of most of the NTDs is based solely on chemotherapy (Molyneux, Adv Parasitol 61:1–45, 2006; Uniting To Combat NTDs, Delivering on promises & driving progress. Available: http://unitingtocombatntds.org/report/delivering-promises-driving-progress-second-report-uniting-combat-ntds [Online]. Accessed 16 May 2014, 2014). Dependance on preventive chemotherapy alone without measures to control vectors and intermediate hosts, vector-borne NTDs like LF and onchocerciasis may not achieve the expected outcome (Bockarie et al., Ann Rev Entomol 54:469–487, 2009) in the set targeted time frame. Vector control has the potential to play a very important role in the control of NTDs and is increasingly becoming a supplementary intervention strategy. However, it requires the commitment of resources, both financial and human, from disease control programs. There is the need for integration at all levels, while adopting the WHO policy guidelines on IVM. Although vector control has been shown to be an effective strategy for the control of vector-borne NTDs (Bockarie et al., Ann Rev Entomol 54:469–487, 2009; Townson et al., Bull World Health Org 83:942–947, 2005), it is faced with some challenges, major among which are insecticide resistance, multiplicity of vector species, changes in vector behavior, and cost. Further research on insecticide resistance and the effect of vector control on one disease, as, for example, malaria vector control on lymphatic filariasis, is still required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amazigo U, Noma M, Bump J, Benton B, Liese B, Yameogo L, Zouré H, Seketeli A (2006) Onchocerciasis. In: Jamison DT, Feachem RG, Makgoba MW, Bos ER, Baingana FK, Hofman KJ, Rogo KO (eds) Disease and mortality in Sub-Saharan Africa, 2nd edn. World Bank, Washington, DC

    Google Scholar 

  • Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ (2008) Integrated vector management for malaria control. Malar J 7(Suppl 1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  • Boakye DA, Back C, Fiasorgbor GK, Sib APP, Coulibaly Y (1998) Sibling species distribution of the Simulium damnosum complex in the west African onchocerciasis control programme area during the decade 1984–1993, following intensive larviciding since 1974. Med Vet Entomol 12:345–358

    Article  PubMed  CAS  Google Scholar 

  • Boakye DA, Wilson MD, Kweku M (2005) A review of leishmaniasis in West Africa. Ghana Med J 39:94–97

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boakye D, Baidoo H, Glah E, Brown C, Appawu M, Wilson M (2007) Monitoring lymphatic filariasis interventions: adult mosquito sampling, and improved PCR – based pool screening method for Wuchereria bancrofti infection in anopheles mosquitoes. Filaria J 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bockarie M, Pedersen E, White G, Michael E (2009) Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol 54:469–487

    Article  PubMed  CAS  Google Scholar 

  • Boyd MF (1926) The influence of obstacles unconsciously erected against anophelines (housing and screening) upon the incidence of malaria. Am J Trop Med Hyg 6:157–160

    Google Scholar 

  • Brown AWA (1962) A survey of simulium control in Africa. Bull World Health Organ 27:511–527

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown KR, Neu DC (1990) Ivermectin – clinical trials and treatment schedules on onchocerciasis. Acta Leiden 59:169–175

    PubMed  CAS  Google Scholar 

  • Carneiro Da Silva MM, Gil LHVG, Marques ET-A Jr, Calzavara-Silva CE (2013) Potential biomarkers for the clinical prognosis of severe dengue. Mem Inst Oswaldo Cruz 108:755–762

    Article  Google Scholar 

  • Celli A (1901) The new preventative treatment of malaria in Latium. Collection of Papers on Malaria. Angelo Celli, 1899–1912. London School of Hygiene and Tropical Medicine, London pp. 1–12

    Google Scholar 

  • Chapin G, Wasserstrom R (1981) Agricultural production and malaria resurgence in Central America and India. Nature 293:181–185

    Article  PubMed  CAS  Google Scholar 

  • Chinery WA (1968) Mosquito control in an urban environment with reference to the anti-mosquito operations in Accra and Tema. Ghana Med J 7:205–209

    Google Scholar 

  • Claborn DM (2010) The biology and control of leishmaniasis vectors. J Global Infect Dis 2:127–134

    Article  Google Scholar 

  • Davies CR, Llanos-Cuentas EA, Campos P, Monge J, Leon E, Canales J (2000) Spraying houses in the Peruvian Andes with lambdacyhalothrin protects residents against cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 94:631–636

    Article  PubMed  CAS  Google Scholar 

  • de Souza DK, Koudou B, Kelly-Hope L, Wilson MD, Bockarie MJ, Boakye DA (2012) Lymphatic filariasis vectors and the implications for accelerated elimination of anopheles-transmitted filariasis in West Africa. Parasites Vectors 5:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchon S, Bonnet J, Marcombe S, Zaim M, Corbel V (2009) Pyrethrum: a mixture of natural pyrethrins has potential for malaria vector control. J Med Entomol 46:516–522

    Article  PubMed  CAS  Google Scholar 

  • Duerr HP, Dietz K, Eichner M (2005) Determinants of the eradicability of filarial infections: a conceptual approach. Trends Parasitol 21:88–96

    Article  PubMed  Google Scholar 

  • Ellis BR, Wilcox BA (2009) The ecological dimensions of vector-borne disease research and control. Cad Saude Publ 25(Suppl 1):S155–S167

    Article  Google Scholar 

  • Emerson PM, Lindsay S, Walraven G, Faal H, Bogh C, Lowe K, Bailey RL (1999) Effect of fly control on trachoma and diarrhoea. Lancet 353:1401–1403

    Article  PubMed  CAS  Google Scholar 

  • Esu E, Lenhart A, Smith L, Horstick O (2010) Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health 15:619–631

    PubMed  Google Scholar 

  • Fain A, Wery M, Tilkin J (1980) Simulium albivirgulatum Wanson et Henrard, 1944, vector of Onchocerca volvulus, in the central Basin region of Zaire. Preliminary note. Ann Soc Belg Med Trop 60:285–289

    PubMed  CAS  Google Scholar 

  • Flores AE, Ponce G, Silva BG, Gutierrez SM, Bobadilla C, Lopez B, Mercado R, Black WC (2013) Wide spread cross resistance to pyrethroids in Aedes aegypti (Diptera: Culicidae) from Veracruz state Mexico. J Econ Entomol 106:959–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold MR, Stevenson D, Fryback DG (2002) HALYS and QALYS and DALYS, Oh My: similarities and differences in summary measures of population Health. Annu Rev Public Health 23:115–134

    Article  PubMed  Google Scholar 

  • Gouteux JP (1990) Current considerations on the distribution of Glossina in west and central Africa. Acta Trop 47:185–187

    Article  PubMed  CAS  Google Scholar 

  • Haldar AK, Sen P, Roy S (2011) Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int 2011:23

    Article  Google Scholar 

  • Hashimoto K, Schofield CJ (2013) Elimination of Rhodnius prolixus in Central America. Parasites Vectors 22:45

    Google Scholar 

  • Hassan AN, Onsi HM (2004) Remote sensing as a tool for mapping mosquito breeding habitats and associated health risk to assist control efforts and development plans: a case study in Wadi El Natroun, Egypt. J Egypt Soc Parasitol 34:367–382

    Google Scholar 

  • Hassan MM, Widaa SO, Osman OM, Numiary MSM, Ibrahim MA, Abushama HM (2012) Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan. Parasites Vectors 7:46

    Article  CAS  Google Scholar 

  • Higa Y (2011) Dengue vectors and their spatial distribution. Trop Med Health 39(Suppl 4):17–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill J, Lines J, Rowland M (2006) Insecticide-treated nets. Adv Parasitol 61:77–128

    Article  PubMed  Google Scholar 

  • Hotez PJ (2008) Neglected infections of poverty in the United States of America. PLoS Negl Trop Dis 2:e256

    Article  PubMed  PubMed Central  Google Scholar 

  • Institute Of Medicine (Us) Forum on Microbial Threats (2008) Integrating strategies to address vector-borne disease. In: Vector-borne diseases: understanding the environmental, human health, and ecological connections, workshop summary [Online]. Washington, DC. Available from: http://www.ncbi.nlm.nih.gov/books/NBK52950/: National Academies Press (US). Accessed 10 Jul 2014

  • Jobin WR (1979) Cost of snail control. Am J Trop Med Hyg 28:142–154

    PubMed  CAS  Google Scholar 

  • Johnson PD, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA, Brown L, Jenkin GA, Fyfe JA (2007) Mycobacterium ulcerans in mosquitoes captured during outbreak of Buruli ulcer, southeastern Australia. Emerg Infect Dis 13:1653–1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly-Hope LA, Molyneux DH, Bockarie MJ (2013) Can malaria vector control accelerate the interruption of lymphatic filariasis transmission in Africa; capturing a window of opportunity? Parasites Vectors 6:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Kershaw W (1963) Vector-borne diseases in man: a general review. Bull World Health Org 29(Suppl):13–17

    PubMed  PubMed Central  Google Scholar 

  • Kweku MA, Odoom S, Puplampu N, Desewu K, Nuako GK, Gyan B, Raczniak G, Kronmann KC, Koram K, Botero S, Boakye D, Akuffo H (2011) An outbreak of suspected cutaneous leishmaniasis in Ghana: lessons learnt and preparation for future outbreaks. Glob Health Action 4:5527

    Google Scholar 

  • Lambrechts L, Knox TB, Wong J, Liebman KA, Albright RG, Stoddard ST (2009) Shifting priorities in vector biology to improve control of vector-borne disease. Trop Med Int Health 14:1–10

    Article  Google Scholar 

  • Le Berre R (1974) Simulium damnosum. In: Pal R, Wharton RH (eds) Control of arthropods of medical and veterinary importance. Springer, New York

    Google Scholar 

  • Le Prince JA, Orenstein AJ, Howard LO (1916) Mosquito control in Panama. G.P. Putnam’s Sons, New York

    Google Scholar 

  • Lent H, Wygodzinsky PW (1979) Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bull Am Mus Nat Hist 163:3

    Google Scholar 

  • Ligon BL (2005) Dengue fever and dengue hemorrhagic fever: a review of the history, transmission, treatment, and prevention. Semin Pediatr Infect Dis 16:60–65

    Article  PubMed  Google Scholar 

  • Lindsay SW, Emerson PM, Charlwood JD (2002) Reducing malaria by mosquito-proofing houses. Trends Parasitol 18:510–514

    Article  PubMed  Google Scholar 

  • Mandahl-Barth G (1965) The species of the genus Bulinus, intermediate hosts of Schistosoma. Bull World Health Org 33:33–44

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marsollier L, Robert R, Aubry J, Saint Andre JP, Kouakou H, Legras P, Manceau A-L, Mahaza C, Carbonnelle B (2002) Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol 68:4623–4628

    Article  PubMed  PubMed Central  Google Scholar 

  • Mccullough FS, Gayral P, Duncan J, Christie JD (1980) Molluscicides in schistosomiasis control. Bull World Health Organ 58:681–689

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mcmahon J (1952) Phoretic association between Simuliidae and crabs. Nature 169:1018

    Article  PubMed  CAS  Google Scholar 

  • Mittal PK (2003) Biolarvicides in vector control: challenges and prospects. J Vector Borne Dis 40:20–32

    PubMed  CAS  Google Scholar 

  • Molyneux DH (2006) Control of human parasitic diseases: context and overview. Adv Parasitol 61:1–45

    Article  PubMed  Google Scholar 

  • Morgan JA, Dejong RJ, Snyder SD, Mkoji GM, Loker ES (2001) Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology 123(Suppl):S211–S228

    PubMed  Google Scholar 

  • Mulla MS (1967) Larvicides and larvicidal formulations for the control of Culex pipiens fatigans. Bull World Health Organ 37:311–315

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muller R (1991) Dracunculus in Africa. In: Macpherson C, Craig PS (eds) Parasitic helminths and zoonoses in Africa. Unwin Hyman, London

    Google Scholar 

  • Nyarango PM, Gebremeskel T, Mebrahtu G, Mufunda J, Abdulmumini U, Ogbamariam A, Kosia A, Gebremichael A, Gunawardena D, Ghebrat Y, Okbaldet Y (2006) A steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004: the effect of combination of control methods. Malar J 5:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogoma SB, Kannady K, Sikulu M, Chaki PP, Govella NJ, Mukabana WR, Gerry F, Killeen GF (2009) Window screening, ceilings and closed eaves as sustainable ways to control malaria in Dar es Salaam, Tanzania. Malar J 8:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Otranto D, Dantas-Torres F, Brianti E, Traversa D, Petri D, Genchi C, Capelli G (2013) Vector-borne helminths of dogs and humans in Europe. Parasites Vectors 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Padonou GG, Sezonlin M, Gbedjissi GL, Ayi I, Azondekon R, Djenontin A, Bio-Bangana S, Oussou O, Yadouleton A, Boakye D, Akogbeto M (2011) Biology of Anopheles gambiae and insecticide resistance: entomological study for a large scale of indoor residual spraying in South East Benin. J Parasitol Vector Biol 3:59–68

    Google Scholar 

  • Pates H, Curtis C (2005) Mosquito behavior and vector control. Annu Rev Entomol 50:53–70

    Article  PubMed  CAS  Google Scholar 

  • Perich MJ, Kardec A, Braga IA, Portal IF, Burge R, Zeichner BC, Brogdon WA, Wirtz RA (2003) Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Med Vet Entomol 17:205–210

    Article  PubMed  CAS  Google Scholar 

  • Stockholm Convention on Persistent Organic Pollutants (2001) Convention text [Online]. Geneva. Available at: http://www.pops.int/documents/convtext/convtext_en.pdf. United Nations Environment Programme

  • Peters W, Killick-Kendrick R (1987) The leishmaniases in biology and medicine; volume I: biology and epidemiology. Academic, London

    Google Scholar 

  • Pichon G (2002) Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles transmitted filariasis. Ann Trop Med Parasitol 96:S143–S152

    Article  PubMed  Google Scholar 

  • Pierce WD (1974) The deadly triangle: a brief history of medical and sanitary entomology. Natural History Museum of Los Angeles County, Los Angeles

    Google Scholar 

  • Pluess B, Tanser FC, Lengeler C, Sharp BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev 14, CD006657

    Google Scholar 

  • Portaels F, Elsen P, Guimaraes-Peres A, Fonteyne PA, Meyers WM (1999) Insects in the transmission of Mycobacterium ulcerans infection. Lancet 353:986

    Article  PubMed  CAS  Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–1006

    Article  PubMed  Google Scholar 

  • Protopopoff N, Van Bortel W, Marcotty T, Van Herp M, Maes P, Baza D, D’alessandro U, Coosemans M (2008) Spatial targeted vector control is able to reduce malaria prevalence in the highlands of Burundi. Am J Trop Med Hyg 79:12–18

    PubMed  Google Scholar 

  • Radcliffe EB, Ragsdale DW (2002) Aphid-transmitted potato viruses: the importance of understanding vector biology. Am J Potato Res 79:353–386

    Article  Google Scholar 

  • Rafatjah HA (1982) Prospects and progress on IPM in world-wide malaria control. Mosq News 42:491–498

    Google Scholar 

  • Ramsey JM, Schofield CJ (2003) Control of Chagas disease vectors. Salud Publica Mex 45:123–128

    Article  PubMed  CAS  Google Scholar 

  • Raoult D, Woodward T, Dumler J (2004) The history of epidemic typhus. Infect Dis Clin N Am 18:127–140

    Article  Google Scholar 

  • Rapado LN, Pinheiro AD, Lopes PODV, Fokoue HH, Scotti MT, Marques JV, Ohlweiler FP, Borrely SI, Pereira CA, Kato MJ, Nakano E, Yamaguchi LF (2013) Schistosomiasis control using piplartine against Biomphalaria glabrata at different developmental stages. PLoS Negl Trop Dis 7:e2251

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascalou G, Pontier D, Menu F, Gourbière S (2012) Emergence and prevalence of human vector-borne diseases in sink vector populations. PLoS One 7:e36858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ritchie SA, Rapley LP, Williams C, Johnson PH, Larkman M, Silcock RM, Long SA, Russell RC (2009) A lethal ovitrap-based mass trapping scheme for dengue control in Australia: I. Public acceptability and performance of lethal ovitraps. Med Vet Entomol 23:295–302

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1913) Malaria prevention in Greece. Br Med J 1:1186

    Article  PubMed Central  Google Scholar 

  • Sadasivaiah S, Tozan Y, Breman J (2007) Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control? Am J Trop Med Hyg 77:249–263

    PubMed  Google Scholar 

  • Scott D (1959) Human trypanosomiasis in Northern Ghana, 1950–56: an epidemiological review. West African Med J 8:165–184

    CAS  Google Scholar 

  • Service, MW (1976) Mosquito ecology – field sampling methods. Wiley, New York

    Google Scholar 

  • Service, MW (1982) Importance of vector ecology in vector disease control in Africa. Bull Soc Vector Ecol 7:1–13

    Google Scholar 

  • Shao JJ, Li SK (1985) A preliminary study of applying Landsat TM images to identify snail habitats in Dongting Lake regions. Hunan Med 2:15–16

    Google Scholar 

  • Shawarby AA (1963) Training of vector control personnel. Bull World Health Organ 29:177–182

    PubMed  PubMed Central  Google Scholar 

  • Smith SM (2004) High- and low-tech malaria control. Science 304:1744

    Article  PubMed  CAS  Google Scholar 

  • Soper FL, Knipe FW, Casini G, Riehl LA, Rubino A (1947) Reduction of anopheles density effected by the pre-season spraying of building interiors with DDT in kerosene, at Castel Volturno, Italy, in 1944–1945, and in the Tiber Delta in 1945. Am J Trop Med Hyg 27:177–200

    PubMed  CAS  Google Scholar 

  • Terenius O, Marinotti O, Sieglaff D, James AA (2008) Molecular genetic manipulation of vector mosquitoes. Cell Host Microbe 13:417–423

    Article  CAS  Google Scholar 

  • The MalEra Consultative Group On Vector Control (2011) A research agenda for malaria eradication: vector control. PLoS Med 8:e1000401

    Article  PubMed Central  Google Scholar 

  • Thomas TG, Prakash V, Singh S, Mandal AK, Chauhan LS (2013) Insecticide susceptibility status of Culex quinquefasciatus Say, the vector of bancroftian filariasis against temephos in Delhi and National Capital Region. Jpn J Infect Dis 66:238–240

    Article  PubMed  Google Scholar 

  • Townson H, Nathan MB, Zaim M, Guillet P, Manga L, Bos R, Kindhauser M (2005) Exploiting the potential of vector control for disease prevention. Bull World Health Organ 83:942–947

    PubMed  CAS  PubMed Central  Google Scholar 

  • Traoré S, Wilson MD, Sima A, Barro T, Diallo A, Aké A, Coulibaly S, Cheke RA, Meyer RRF, Mas J, Mccall PJ, Post RJ, Zouré H, Noma M, Yaméogo L, Sékétéli AV, Amazigo UV (2009) The elimination of the onchocerciasis vector from the island of Bioko as a result of larviciding by the WHO African programme for onchocerciasis control. Acta Trop 111:211–218

    Article  PubMed  CAS  Google Scholar 

  • Ughasi J, Bekhard H, Coulibaly M, Adabie-Gomez D, Gyapong J, Appawu M, Wilson M, Boakye D (2012) Mansonia africana and Mansonia uniformis are vectors in the transmission of Wuchereria bancrofti lymphatic filariasis in Ghana. Parasites Vectors 5:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Uniting To Combat NTDs (2012) The London declaration on neglected tropical diseases 2012. Available: http://unitingtocombatntds.org/downloads/press/ntd_event_london_declaration_on_ntds.pdf . [Online]. Accessed 28 Dec 2013

  • Uniting To Combat NTDs (2014) Delivering on promises & driving progress. Available: http://unitingtocombatntds.org/report/delivering-promises-driving-progress-second-report-uniting-combat-ntds [Online]. Accessed 16 May 2014

  • Van Someren VD, Mcmahon J (1950) Phoretic association between Afronurus and Simulium species, and the discovery of the early stages of Simulium neavei on freshwater crabs. Nature 166:350–351

    Article  PubMed  Google Scholar 

  • Varmus H, Klausner R, Zerhouni E, Acharya T, Daar AS, Singer PA (2003) Public health. Grand Challenges Global Health Sci 302:398–399

    CAS  Google Scholar 

  • Walsh JF (1985) The feeding behaviour of Simulium larvae, and the development, testing and monitoring of the use of larvicides, with special reference to the control of Simulium damnosum Theobald s.l. (Diptera: Simuliidae): a review. Bull Entomol Res 75:549–594

    Article  CAS  Google Scholar 

  • WHO (2003) In: WHO (ed) Space spray application of insecticides for vector and public health pest control: a practitioner’s guide. WHO, Geneva

    Google Scholar 

  • WHO (2013) Lymphatic filariasis: a handbook for national elimination programmes. World Health Organization, Geneva

    Google Scholar 

  • Woodruff DS, Carpenter MP, Upatham ES, Viyanant V (1999) Molecular Phylogeography of Oncomelania lindoensis (Gastropoda: Pomatiopsidae), the intermediate host of Schistosoma Japonicum in Sulawesi. J Molluscan Stud 65:21–31

    Article  Google Scholar 

  • World Health Organization (2008) WHO position statement on integrated vector management. Wkly Epidemiol Rec 83:177–181

    Google Scholar 

  • World Health Organization (2009) Dengue guidelines for diagnosis, treatment, prevention and control. WHO, Geneva

    Google Scholar 

  • World Health Organization (2011) World malaria report. World Health Organization, Geneva

    Google Scholar 

  • Yelifari L, Frempong E, Olsen A (1997) The intermediate hosts of Dracunculus medinensis in Northern Region, Ghana. Ann Trop Med Parasitol 91:403–409

    Article  PubMed  CAS  Google Scholar 

  • Yirenya-Tawiah DR, Rashid AA, Futagbi G, Aboagye I, Dade M (2011) Prevalence of snail vectors of schistosomiasis in the Kpong Head Pond, Ghana. West Afr J Appl Ecol 18:39–45

    Google Scholar 

  • Yoshikawa MJ (2010) Dengue and Chikungunya virus infection in Southeast Asia: active governmental intervention in Republic of Singapore. In: Tanaka K, Niki Y, Akatsuki Y (eds) Current topics of infectious diseases in Japan and Asia. Springer, Tokyo

    Google Scholar 

  • Yukich J, Lengeler C, Tediosi F, Brown N, Mulligan J-A, Chavasse D, Stevens W, Justino J, Conteh L, Maharaj R, Erskine M, Mueller D, Wiseman V, Ghebremeskel T, Zerom M, Goodman C, Mcguire D, Urrutia J, Sakho F, Hanson K, Sharp B (2008) Costs and consequences of large-scale vector control for malaria. Malar J 7:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Zagaria N, Savioli L (2002) Elimination of lymphatic filariasis: a public health challenge. Ann Trop Med Parasitol 96(Suppl 2):S3–S13

    Article  PubMed  Google Scholar 

  • Zahar AR (1984) Vector control operations in the African context. Bull World Health Organ 62:89–100

    PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Xu DZ, Sun ZD, Zhang B, Zhou XN, Zhou Y, Gong ZL, Liu ZJ (2003) Application of satellite image for surveillance of vegetation landscapes of Oncomelenia-snail habitats in marshland using unsupervised classification. Chin J Epidemiol 24:261–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Boakye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boakye, D., de Souza, D., Bockarie, M. (2016). Alternative Interventions Against Neglected Tropical Diseases in SSA: Vector Control. In: Gyapong, J., Boatin, B. (eds) Neglected Tropical Diseases - Sub-Saharan Africa. Neglected Tropical Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-25471-5_16

Download citation

Publish with us

Policies and ethics