Skip to main content

Statistical Methods Used in Interim Monitoring

  • Chapter
Fundamentals of Clinical Trials

Abstract

In Chap. 16, the administrative structure was discussed for conducting interim analysis of data quality and outcome data for benefit and potential harm to trial participants. Although statistical approaches for interim analyses may have design implications, we have delayed discussing any details until this chapter because they really focus on monitoring accumulating data. Even if, during the design of the trial, consideration was not given to sequential methods, they could still be used to assist in the data monitoring or the decision-making process. In this chapter, some statistical methods for sequential analysis will be reviewed that are currently available and used for monitoring accumulating data in a clinical trial. These methods help support the evaluation of interim data and whether they are so convincing that the trial should be terminated early for benefit, harm, or futility or whether it should be continued to its planned termination. No single statistical test or monitoring procedure ought to be used as a strict rule for decision-making, but rather as one piece of evidence to be integrated with the totality of evidence [1–6]. Therefore, it is difficult to make a single recommendation about which should be used. However, the following methods, when applied appropriately, can be useful guides in the decision-making process.

The original version of this chapter was revised. An erratum can be found at DOI 10.1007/978-3-319-18539-2_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Canner PL. Practical Aspects of Decision-Making In Clinical Trials—The Coronary Drug Project as a Case-Study. Control Clin Trials 1981;1:363–376.

    Article  Google Scholar 

  2. DeMets DL. Data monitoring and sequential analysis—An academic perspective. J Acquir Immune Defic Syndr 1990;3:S124–S133.

    Google Scholar 

  3. DeMets DL, Furberg C, Friedman LM. Data monitoring in clinical trials: a case studies approach. New York, NY, Springer, 2006.

    Book  Google Scholar 

  4. Ellenberg SS, Fleming TR, DeMets DL. Data Monitoring Committees in Clinical Trials: A Practical Perspective. Wiley, 2003.

    Google Scholar 

  5. Fisher MR, Roecker EB, DeMets DL. The role of an independent statistical analysis center in the industry-modified National Institutes of Health model. Drug Inf J 2001;35:115–129.

    Article  Google Scholar 

  6. Fleming TR, DeMets DL. Monitoring of clinical trials: issues and recommendations. Control Clin Trials 1993;14:183–197.

    Article  Google Scholar 

  7. Anscombe FJ. Sequential medical trials. J Am Stat Assoc 1963;58:365–383.

    Article  MathSciNet  Google Scholar 

  8. Armitage P. Restricted sequential procedures. Biometrika 1957;9–26.

    Google Scholar 

  9. Armitage P, McPherson CK, Rowe BC. Repeated Significance Tests on Accumulating Data. J R Stat Soc Ser A 1969;132:235–244.

    Article  MathSciNet  Google Scholar 

  10. Bross I Sequential medical plans. Biometrics 1952;8:188–205.

    Article  Google Scholar 

  11. Cornfield J. Sequential trials, sequential analysis and the likelihood principle. Am Stat 1966;20:18–23.

    Google Scholar 

  12. DeMets DL, Lan KKG. An Overview of Sequential-Methods and Their Application in Clinical-Trials. Commun Stat Theory Methods 1984;13:2315–2338.

    Article  Google Scholar 

  13. Robbins H. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society 1952;58:527–535.

    Article  MathSciNet  Google Scholar 

  14. Robbins H. Statistical methods related to the law of the iterated logarithm. Ann Math Stat 1970;1397–1409.

    Google Scholar 

  15. Simon R, Weiss GH, Hoel DG. Sequential Analysis of Binomial Clinical Trials. Biometrika 1975;62:195–200.

    Article  MathSciNet  Google Scholar 

  16. Wald A. Sequential Analysis. Dover Publications, 2013.

    Google Scholar 

  17. Whitehead J, Stratton I. Group Sequential Clinical Trials with Triangular Continuation Regions. Biometrics 1983;39:227–236.

    Article  MathSciNet  Google Scholar 

  18. Whitehead J. The Design and Analysis of Sequential Clinical Trials. Wiley, 1997.

    Google Scholar 

  19. Whitehead J, Jones D. The analysis of sequential clinical trials. Biometrika 1979;66:443–452.

    Article  Google Scholar 

  20. Armitage P. Sequential medical trials, ed 2. New York, Wiley, 1975.

    Google Scholar 

  21. Silverman WA, Agate FJ, Fertig JW. A sequential trial of the nonthermal effect of atmospheric humidity on survival of newborn infants of low birth weight. Pediatrics 1963;31:719–724.

    Article  Google Scholar 

  22. Truelove SC, Watkinson G, Draper G. Comparison of corticosteroid and sulphasalazine therapy in ulcerative colitis. Br Med J 1962;2:1708.

    Article  Google Scholar 

  23. Freireich EJ, Gehan E, Frei E, et al. The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: A model for evaluation of other potentially useful therapy. Blood 1963;21:699–716.

    Article  Google Scholar 

  24. McPherson CK, Armitage P. Repeated significance tests on accumulating data when the null hypothesis is not true. J R Stat Soc Ser A 1971;15–25.

    Google Scholar 

  25. Chatterjee SK, Sen PK. Nonparametric testing under progressive censoring. Calcutta Statist Assoc Bull 1973;22:13–50.

    Article  MathSciNet  Google Scholar 

  26. Dambrosia JM, Greenhouse SW. Early stopping for sequential restricted tests of binomial distributions. Biometrics 1983;695–710.

    Google Scholar 

  27. Whitehead J, Jones DR, Ellis SH. The analysis of a sequential clinical trial for the comparison of two lung cancer treatments. Statist Med 1983;2:183–190.

    Article  Google Scholar 

  28. Breslow NE, Haug C. Sequential comparison of exponential survival curves. J Am Stat Assoc 1972;67:691–697.

    Article  Google Scholar 

  29. Canner PL. Monitoring treatment differences in long-term clinical trials. Biometrics 1977;603–615.

    Google Scholar 

  30. Davis CE. A two sample Wilcoxon test for progressively censored data. Commun Stat Theory Methods 1978;7:389–398.

    Article  Google Scholar 

  31. Joe H, Koziol JA, Petkau AJ. Comparison of procedures for testing the equality of survival distributions. Biometrics 1981;327–340.

    Google Scholar 

  32. Jones D, Whitehead J. Sequential forms of the log rank and modified Wilcoxon tests for censored data. Biometrika 1979;66:105–113.

    Article  MathSciNet  Google Scholar 

  33. Koziol JA, Petkau AJ. Sequential testing of the equality of two survival distributions using the modified Savage statistic. Biometrika 1978;65:615–623.

    Article  MathSciNet  Google Scholar 

  34. Muenz LR, Green SB, Byar DP. Applications of the Mantel-Haenszel statistic to the comparison of survival distributions. Biometrics 1977;617–626.

    Google Scholar 

  35. Nagelkerke NJD, Hart AAM. The sequential comparison of survival curves. Biometrika 1980;67:247–249.

    Article  MathSciNet  Google Scholar 

  36. Sellke T, Siegmund D. Sequential analysis of the proportional hazards model. Biometrika 1983;70:315–326.

    Article  MathSciNet  Google Scholar 

  37. Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J Radiol 1971;44:793–797.

    Article  Google Scholar 

  38. Peto R, Pike MC, Armitage P, et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br J Cancer 1976;34:585.

    Google Scholar 

  39. Pocock SJ. Group Sequential Methods in Design and Analysis of Clinical-Trials. Biometrika 1977;64:191–200.

    Article  Google Scholar 

  40. Pocock SJ. Size of cancer clinical trials and stopping rules. Br J Cancer 1978;38:757.

    Article  Google Scholar 

  41. Pocock SJ. Interim analyses for randomized clinical trials: the group sequential approach. Biometrics 1982;38:153–162.

    Article  Google Scholar 

  42. O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics 1979;35:549–556.

    Article  Google Scholar 

  43. DeMets DL. Practical aspects in data monitoring: a brief review. Stat Med 1987;6:753-760.

    Article  Google Scholar 

  44. Emerson SS, Fleming TR. Interim analyses in clinical trials. Oncology (Williston Park, NY) 1990;4:126.

    Google Scholar 

  45. Fleming TR, Watelet LF. Approaches to monitoring clinical trials. J Natl Cancer Inst 1989;81:188–193.

    Article  Google Scholar 

  46. Freedman LS, Lowe D, Macaskill P. Stopping rules for clinical trials. Statist Med 1983;2:167–174.

    Article  Google Scholar 

  47. Jennison C, Turnbull BW. Statistical approaches to interim monitoring of medical trials: a review and commentary. Stat Sci 1990;299–317.

    Google Scholar 

  48. Gail MH, DeMets DL, Slud EV. Simulation studies on increments of the two-sample logrank score test for survival time data, with application to group sequential boundaries. Lecture Notes-Monograph Series 1982;2:287–301.

    Google Scholar 

  49. Harrington DP, Fleming TR, Green SJ. Procedures for serial testing in censored survival data; in Crowley J, Johnson RA, Gupta SS (eds): Survival Analysis. Hayward, CA, Institute of Mathematical Statistics, 1982, pp 269–286.

    Google Scholar 

  50. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer chemotherapy reports Part 1 1966;50:163–170.

    Google Scholar 

  51. Tsiatis AA. The asymptotic joint distribution of the efficient scores test for the proportional hazards model calculated over time. Biometrika 1981;68:311–315.

    Article  MathSciNet  Google Scholar 

  52. Tsiatis AA. Group sequential methods for survival analysis with staggered entry. Lecture Notes-Monograph Series 1982;2:257–268.

    Google Scholar 

  53. Tsiatis AA. Repeated Significance Testing for A General-Class of Statistics Used in Censored Survival Analysis. J Am Stat Assoc1982;77:855–861.

    Article  MathSciNet  Google Scholar 

  54. Gehan EA. A Generalized Wilcoxon Test for Comparing Arbitrarily Singly-Censored Samples. Biometrika 6-1-1965;52:203–223.

    Google Scholar 

  55. Slud E, Wei LJ. Two-Sample Repeated Significance Tests Based on the Modified Wilcoxon Statistic. J Am Stat Assoc 1982;77:862–868.

    Article  MathSciNet  Google Scholar 

  56. Peto R, Peto J: Asymptotically Efficient Rank Invariant Test Procedures. J R Stat Soc Ser A 1972;135:185–207.

    Article  Google Scholar 

  57. DeMets DL, Gail MH. Use of logrank tests and group sequential methods at fixed calendar times. Biometrics 1985;41:1039–1044.

    Article  Google Scholar 

  58. George SL. Sequential Methods Based on the Boundaries Approach for the Clinical Comparison Of Survival Times-Discussion. Statistics in Medicine 13[13-14], 1369–1370. 1994, John Wiley & Sons Ltd.

    Google Scholar 

  59. Kim K, Tsiatis AA. Study Duration for Clinical-Trials with Survival Response and Early Stopping Rule. Biometrics 1990;46:81–92.

    Article  MathSciNet  Google Scholar 

  60. Kim K. Study duration for group sequential clinical trials with censored survival data adjusting for stratification. Statist Med 1992;11:1477–1488.

    Article  Google Scholar 

  61. Whitehead J: Sequential methods based on the boundaries approach for the clinical comparison of survival times. Statist Med 1994;13:1357–1368.

    Article  Google Scholar 

  62. Beta-Blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction: I. mortality results. JAMA 1982;247:1707–1714.

    Google Scholar 

  63. DeMets DL, Hardy R, Friedman LM, Gordon Lan KK. Statistical aspects of early termination in the Beta-Blocker Heart Attack Trial. Control Clin Trials 1984;5:362–372.

    Article  Google Scholar 

  64. DeMets DL, Lan KK. Interim analysis: the alpha spending function approach. Stat Med 1994;13:1341–1352.

    Article  Google Scholar 

  65. Kim K, DeMets DL: Design and Analysis of Group Sequential Tests Based on the Type I Error Spending Rate Function. Biometrika 1987;74:149–154.

    Article  MathSciNet  Google Scholar 

  66. Lan KKG, Rosenberger WF, Lachin JM. Use of spending functions for occasional or continuous monitoring of data in clinical trials. Stat Med 1993;12:2219–2231.

    Article  Google Scholar 

  67. Lan KKG, Zucker DM. Sequential monitoring of clinical trials: the role of information and Brownian motion. Stat Med 1993;12:753–765.

    Article  Google Scholar 

  68. Lan KKG, DeMets DL. Discrete Sequential Boundaries for Clinical-Trials. Biometrika 1983;70:659–663.

    Article  MathSciNet  Google Scholar 

  69. Lan KKG, DeMets DL, Halperin M. More Flexible Sequential and Non-Sequential Designs in Long-Term Clinical-Trials. Commun Stat Theory Methods 1984;13:2339–2353.

    Article  Google Scholar 

  70. Lan KKG, Reboussin DM, DeMets DL. Information and Information Fractions for Design and Sequential Monitoring of Clinical-Trials. Commun Stat Theory Methods 1994;23:403–420.

    Article  Google Scholar 

  71. Lan KKG, DeMets D. Group sequential procedures: calendar versus information time. Stat Med 1989;8:1191–1198.

    Article  Google Scholar 

  72. Reboussin DM, DeMets DL, Kim K, Lan KKG. Lan-DeMets Method—Statistical Programs for Clinical Trials. [2.1]. 11–17–2003.

    Google Scholar 

  73. Reboussin DM, DeMets DL, Kim K, Lan KKG. Computations for group sequential boundaries using the Lan-DeMets spending function method. Control Clin Trials 2000;21:190–207.

    Article  Google Scholar 

  74. DeMets DL. Futility approaches to interim monitoring by data monitoring committees. Clin Trials 2006;3:522–529.

    Article  Google Scholar 

  75. Hwang IK, Shih WJ, De Cani JS. Group sequential designs using a family of type I error probability spending functions. Statist Med 1990;9:1439–1445.

    Article  Google Scholar 

  76. Wang SK, Tsiatis AA: Approximately optimal one-parameter boundaries for group sequential trials. Biometrics 1987;193–199.

    Google Scholar 

  77. Lan KKG, DeMets DL. Changing frequency of interim analysis in sequential monitoring. Biometrics 1989;45:1017–1020.

    Article  Google Scholar 

  78. Proschan MA, Follmann DA, Waclawiw MA. Effects of assumption violations on type I error rate in group sequential monitoring. Biometrics 1992;1131–1143.

    Google Scholar 

  79. Geller NL. Discussion of “Interim analysis: the alpha spending approach”. Statist Med 1994;13:1353–1356.

    Article  Google Scholar 

  80. Falissard B, Lellouch J. A new procedure for group sequential analysis in clinical trials. Biometrics 1992;373–388.

    Google Scholar 

  81. Lan KKG, Lachin JM. Implementation of group sequential logrank tests in a maximum duration trial. Biometrics 1990;46:759–770.

    Article  Google Scholar 

  82. Li ZQ, Geller NL. On the Choice of Times for Data Analysis in Group Sequential Clinical Trials. Biometrics 1991;47:745–750.

    Article  Google Scholar 

  83. Jennison C, Turnbull BW. Group-sequential analysis incorporating covariate information. J Am Stat Assoc 1997;92:1330–1341.

    Article  MathSciNet  Google Scholar 

  84. Scharfstein DO, Tsiatis AA, Robins JM. Semiparametric Efficiency and Its Implication on the Design and Analysis of Group-Sequential Studies. J Am Stat Assoc 1997;92:1342–1350.

    Article  Google Scholar 

  85. Kim K, DeMets DL. Sample size determination for group sequential clinical trials with immediate response. Stat Med 1992;11:1391–1399.

    Article  Google Scholar 

  86. Lee JW, DeMets DL. Sequential Comparison of Changes with Repeated Measurements Data. J Am Stat Assoc 1991;86:757–762.

    Article  MathSciNet  Google Scholar 

  87. Lee JW, DeMets DL. Sequential Rank-Tests with Repeated Measurements in Clinical-Trials. J Am Stat Assoc 1992;87:136–142.

    Article  MathSciNet  Google Scholar 

  88. Lee JW. Group sequential testing in clinical trials with multivariate observations: a review. Statist Med 1994;13:101–111.

    Article  Google Scholar 

  89. Su JQ, Lachin JM. Group Sequential Distribution-Free Methods for the Analysis of Multivariate Observations. Biometrics 1992;48:1033–1042.

    Article  Google Scholar 

  90. Wei LJ, Su JQ, Lachin JM. Interim Analyses with Repeated Measurements in A Sequential Clinical-Trial. Biometrika 1990;77:359–364.

    Article  MathSciNet  Google Scholar 

  91. Wu MC, Lan G KK. Sequential Monitoring for Comparison of Changes in a Response Variable in Clinical Studies. Biometrics 1992;48:765–779.

    Google Scholar 

  92. Gange SJ, DeMets DL. Sequential monitoring of clinical trials with correlated responses. Biometrika 1996;83:157–167.

    Article  MathSciNet  Google Scholar 

  93. Fairbanks K, Madsen R. P values for tests using a repeated significance test design. Biometrika 1982;69:69–74.

    MathSciNet  Google Scholar 

  94. Chang MN, O’Brien PC. Confidence intervals following group sequential tests. Control Clin Trials 1986;7:18–26.

    Article  Google Scholar 

  95. DeMets DL, Lan KKG. Discussion of: Interim analyses: The repeated confidence interval approach by C. Jennison and BW Turnbull. J R Stat Soc Series B Stat Methodol 1989;51:344.

    Google Scholar 

  96. Emerson SS, Fleming TR: Parameter Estimation Following Group Sequential Hypothesis Testing. Biometrika 1990;77:875–892.

    Article  MathSciNet  Google Scholar 

  97. Hughes MD, Pocock SJ. Stopping rules and estimation problems in clinical trials. Stat Med 1988;7:1231–1242.

    Article  Google Scholar 

  98. Jennison C, Turnbull BW. Repeated Confidence-Intervals for Group Sequential Clinical-Trials. Control Clin Trials 1984;5:33–45.

    Article  Google Scholar 

  99. Jennison C, Turnbull BW. Interim Analyses: The Repeated Confidence Interval Approach. J R Stat Soc Series B Stat Methodol 1989;51:305–361.

    MathSciNet  Google Scholar 

  100. Kim K, DeMets DL. Confidence Intervals Following Group Sequential Tests in Clinical Trials. Biometrics 12-1-1987;43:857–864.

    Google Scholar 

  101. Kim K. Point Estimation Following Group Sequential Tests. Biometrics 1989;45:613–617.

    Article  Google Scholar 

  102. Pocock SJ, Hughes MD. Practical problems in interim analyses, with particular regard to estimation. Control Clin Trials 1989;10:209S–221S.

    Article  Google Scholar 

  103. Rosner GL, Tsiatis AA. Exact confidence intervals following a group sequential trial: A comparison of methods. Biometrika 1988;75:723–729.

    Article  Google Scholar 

  104. Siegmund D. Estimation following sequential tests. Biometrika 1978;65:341–349.

    Article  MathSciNet  Google Scholar 

  105. Tsiatis AA, Rosner GL, Mehta CR. Exact confidence intervals following a group sequential test. Biometrics 1984;797–803.

    Google Scholar 

  106. Whitehead J: On the bias of maximum likelihood estimation following a sequential test. Biometrika 1986;73:573–581.

    Article  MathSciNet  Google Scholar 

  107. Whitehead J, Facey KM. Analysis after a sequential trial: A comparison of orderings of the sample space. Joint Society for Clinical Trials/International Society for Clinical Biostatistics, Brussels 1991.

    Google Scholar 

  108. Fleming TR. Treatment evaluation in active control studies. Cancer Treat Rep 1987;71:1061–1065.

    Google Scholar 

  109. Fleming TR. Evaluation of active control trials in AIDS. J Acquir Immune Defic Syndr 1990;3:S82–S87.

    Google Scholar 

  110. DeMets DL, Ware JH. Group Sequential Methods for Clinical Trials with A One-Sided Hypothesis. Biometrika 1980;67:651–660.

    Article  MathSciNet  Google Scholar 

  111. DeMets DL, Ware JH. Asymmetric Group Sequential Boundaries for Monitoring Clinical-Trials. Biometrika 1982;69:661–663.

    Article  Google Scholar 

  112. Emerson SS, Fleming TR. Symmetric Group Sequential Test Designs. Biometrics 1989;45:905–923.

    Article  MathSciNet  Google Scholar 

  113. Gould AL, Pecore VJ. Group sequential methods for clinical trials allowing early acceptance of Ho and incorporating costs. Biometrika 1982;69:75–80.

    Google Scholar 

  114. DeMets DL, Pocock SJ, Julian DG. The agonising negative trend in monitoring of clinical trials. Lancet 1999;354:1983–1988.

    Article  Google Scholar 

  115. Cardiac Arrhythmia Suppression Trial Investigators. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N Engl J Med 1992;327:227–233.

    Article  Google Scholar 

  116. Friedman LM, Bristow JD, Hallstrom A, et al. Data monitoring in the cardiac arrhythmia suppression trial. Online Journal of Current Clinical Trials 7–31–1993;79.

    Google Scholar 

  117. Pawitan Y, Hallstrom A. Statistical interim monitoring of the cardiac arrhythmia suppression trial. Statist Med 1990;9:1081–1090.

    Article  Google Scholar 

  118. Feyzi J, Julian DG, Wikstrand J, Wedel H. Data monitoring experience in the Metoprolol CR/XL randomized intervention trial in chronic heart failure: Potentially high-risk treatment in high-risk patients; in Data Monitoring in Clinical Trials: Springer, 2006, pp 136–147.

    Google Scholar 

  119. Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Taylor & Francis, 1999.

    Google Scholar 

  120. Proschan MA, Lan KKG, Wittes JT. Statistical Monitoring of Clinical Trials: A Unified Approach. Springer New York, 2006.

    Google Scholar 

  121. Alling DW. Early decision in the Wilcoxon two-sample test. J Am Stat Assoc 1963;58:713–720.

    Article  MathSciNet  Google Scholar 

  122. Alling DW. Closed sequential tests for binomial probabilities. Biometrika 1966;73–84.

    Google Scholar 

  123. Halperin M, Ware J. Early decision in a censored Wilcoxon two-sample test for accumulating survival data. J Am Stat Assoc 1974;69:414–422.

    Article  MathSciNet  Google Scholar 

  124. DeMets DL, Halperin M. Early stopping in the two-sample problem for bounded random variables. Control Clin Trials 1982;3:1–11.

    Article  Google Scholar 

  125. Canner PL. Monitoring of the data for evidence of adverse or beneficial treatment effects. Control Clin Trials 1983;4:467–483.

    Article  Google Scholar 

  126. Lan KKG, Simon R, Halperin M. Stochastically curtailed tests in long-term clinical trials. Seq Anal 1982;1:207–219.

    MathSciNet  Google Scholar 

  127. Halperin M, Gordon Lan KK, Ware JH, et al. An aid to data monitoring in long-term clinical trials. Control Clin Trials 1982;3:311–323.

    Article  Google Scholar 

  128. Lan KKG, Wittes J. The B-value: a tool for monitoring data. Biometrics 1988;44:579–585.

    Article  Google Scholar 

  129. Cohn JN, Goldstein SO, Greenberg BH, et al. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. N Engl J Med 1998;339:1810–1816.

    Article  Google Scholar 

  130. Colton T. A model for selecting one of two medical treatments. J Am Stat Assoc 1963;58:388–400.

    Article  MathSciNet  Google Scholar 

  131. Carlin BP, Louis TA. Bayes and Empirical Bayes Methods for Data Analysis, Second Edition. Taylor & Francis, 2000.

    Google Scholar 

  132. Choi SC, Pepple PA. Monitoring Clinical Trials Based on Predictive Probability of Significance. Biometrics 1989;45:317–323.

    Article  Google Scholar 

  133. Cornfield J. A Bayesian test of some classical hypotheses—with applications to sequential clinical trials. J Am Stat Assoc 1966;61:577–594.

    MathSciNet  Google Scholar 

  134. Cornfield J. Recent methodological contributions to clinical trials. Am J Epidemiol 1976;104:408–421.

    Article  Google Scholar 

  135. Freedman LS, Spiegelhalter DJ, Parmar MK. The what, why and how of Bayesian clinical trials monitoring. Statist Med 1994;13:1371–1383.

    Article  Google Scholar 

  136. George SL, Li C, Berry DA, Green MR. Stopping a clinical trial early: Frequentist and bayesian approaches applied to a CALGB trial in non-small-cell lung cancer. Statist Med 1994;13:1313–1327.

    Article  Google Scholar 

  137. Grieve AP, Choi SC, Pepple PA. Predictive Probability in Clinical Trials. Biometrics 1991;47:323–330.

    Article  Google Scholar 

  138. Machin D. Discussion of “The what, why and how of Bayesian clinical trials monitoring”. Statist Med 1994;13:1385–1389.

    Article  Google Scholar 

  139. Spiegelhalter DJ, Freedman LS, Blackburn PR. Monitoring clinical trials: Conditional or predictive power? Control Clin Trials 1986;7:8–17.

    Article  Google Scholar 

  140. Spiegelhalter DJ. Probabilistic prediction in patient management and clinical trials. Statist Med 1986;5:421–433.

    Article  Google Scholar 

  141. Lau J, Antman EM, Jimenez-Silva J, et al. Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med 1992;327:248–254.

    Article  Google Scholar 

  142. Bauer P, Kohne K. Evaluation of Experiments with Adaptive Interim Analyses. Biometrics 1994;50:1029–1041.

    Article  Google Scholar 

  143. Berry DA. Adaptive clinical trials: the promise and the caution. J Clin Oncol 2011;29:606–609.

    Article  Google Scholar 

  144. Burman CF, Sonesson C. Are Flexible Designs Sound? Biometrics 2006;62:664–669.

    Article  MathSciNet  Google Scholar 

  145. Chen YH, DeMets DL, Lan KK. Increasing the sample size when the unblinded interim result is promising. Stat Med 2004;23:1023–1038.

    Article  Google Scholar 

  146. Cui L, Hun HMJ, Wang SJ. Impact of changing sample size in a group sequential clinical trial. Proceedings of the Biopharmaceutical Section, American Statistical Association, 1997, 52–57. 1997.

    Google Scholar 

  147. Cui L, Hung HMJ, Wang SJ. Modification of Sample Size in Group Sequential Clinical Trials. Biometrics 1999;55:853–857.

    Article  Google Scholar 

  148. Fisher LD. Self-designing clinical trials. Statist Med 1998;17:1551–1562.

    Article  Google Scholar 

  149. Fleming TR. Standard versus adaptive monitoring procedures: a commentary. Statist Med 2006;25:3305–3312.

    Article  MathSciNet  Google Scholar 

  150. Hu F, Zhang LX, He X. Efficient randomized-adaptive designs. Ann Stat 2009;2543-2560.

    Google Scholar 

  151. Hung HMJ, Wang SJ. Sample Size Adaptation in Fixed-Dose Combination Drug Trial. J Biopharm Stat 2012;22:679–686.

    Article  MathSciNet  Google Scholar 

  152. Irle S, Schafer H: Interim design modifications in time-to-event studies. J Am Stat Assoc 2012;107:341–348.

    Article  MathSciNet  Google Scholar 

  153. Lan KKG, Trost DC. Estimation of parameters and sample size re-estimation. Proceedings–Biopharmaceutical Section American Statistical Association, 48–51. 1997. American Statistical Association.

    Google Scholar 

  154. Levin GP, Emerson SC, Emerson SS. Adaptive clinical trial designs with pre-specified rules for modifying the sample size: understanding efficient types of adaptation. Statist Med 2013;32:1259–1275.

    Article  MathSciNet  Google Scholar 

  155. Lui KJ Sample size determination under an exponential model in the presence of a confounder and type I censoring. Control Clin Trials 1992;13:446–458.

    Article  Google Scholar 

  156. Luo X, Li M, Shih WJ, Ouyang P. Estimation of Treatment Effect Following a Clinical Trial with Adaptive Design. J Biopharm Stat 2012;22:700–718.

    Article  MathSciNet  Google Scholar 

  157. Mehta CR. Adaptive clinical trial designs with pre-specified rules for modifying the sample size: a different perspective. Statist Med 2013;32:1276–1279.

    Article  Google Scholar 

  158. Posch M, Proschan MA. Unplanned adaptations before breaking the blind. Statist Med 2012;31:4146–4153.

    Article  MathSciNet  Google Scholar 

  159. Proschan MA, Hunsberger SA. Designed Extension of Studies Based on Conditional Power. Biometrics 1995;51:1315–1324.

    Article  Google Scholar 

  160. Proschan MA, Liu Q, Hunsberger S. Practical midcourse sample size modification in clinical trials. Control Clin Trials 2003;24:4–15.

    Article  Google Scholar 

  161. Proschan MA. Sample size re-estimation in clinical trials. Biom J 2009;51:348–357.

    Article  MathSciNet  Google Scholar 

  162. Shen Y, Fisher. Statistical Inference for Self-Designing Clinical Trials with a One-Sided Hypothesis. Biometrics 1999;55:190–197.

    Google Scholar 

  163. Tsiatis AA, Mehta C. On the Inefficiency of the Adaptive Design for Monitoring Clinical Trials. Biometrika 2003;90:367–378.

    Article  MathSciNet  Google Scholar 

  164. van der Graaf R, Roes KC, van Delden JJ. Adaptive trials in clinical research: scientific and ethical issues to consider. JAMA 2012;307:2379–2380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Friedman, L.M., Furberg, C.D., DeMets, D.L., Reboussin, D.M., Granger, C.B. (2015). Statistical Methods Used in Interim Monitoring. In: Fundamentals of Clinical Trials. Springer, Cham. https://doi.org/10.1007/978-3-319-18539-2_17

Download citation

Publish with us

Policies and ethics