Skip to main content

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 90))

  • 812 Accesses

Abstract

We consider the interfacial flows between two viscous incompressible fluids. After formulating the mathematical framework, we first present analytical solutions to the linearized problem, and discuss some results from linear asymptotic analysis. We then describe a numerical method for computing the nonlinear motion which ensures a high accuracy on and near the moving interface. Simulation results on viscous Stokes waves are presented to demonstrate the advantages of this method. In addition, as an example of nonlinear asymptotic study, we conduct a perturbation series analysis for Stokes waves with small viscosity, the results of which provide an analytical justification to the numerical observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D. A., Tannehill, J. C., & Pletcher, R. H. (1984). Computational fluid mechanics and heat transfer. Washington, DC: Hemisphere Publishing Corporation.

    MATH  Google Scholar 

  2. Baker, G. R., Meiron, D. I., & Orszag, S. A. (1982). Generalized vortex methods for free surface flow problems. Journal of Fluid Mechanics, 123, 477–501,

    Article  MathSciNet  MATH  Google Scholar 

  3. Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  4. Caboussat, A. (2005). Numerical simulation of two-phase free surface flows. Archives of Computational Methods in Engineering, 12, 165–224.

    Article  MATH  Google Scholar 

  5. Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press.

    MATH  Google Scholar 

  6. De, S. C. (1955). Contribution to the theory of Stokes waves. Proceedings of the Cambridge Philosophical Society, 51, 713–736.

    Google Scholar 

  7. Dowell, E. H., & Hall, K. C. (2001). Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 33, 445–490.

    Article  Google Scholar 

  8. Glimm, J., McBryan, O., Menikoff, R. & Sharp, D. (1986). Front tracking applied to Rayleigh-Taylor instability. SIAM Journal on Scientific and Statistical Computing, 7, 230–251.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gresho, P. M. (1991). Incompressible fluid dynamics: Some fundamental formulation issues. Annual Review of Fluid Mechanics, 23, 413–453.

    Article  MathSciNet  Google Scholar 

  10. Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8, 2182–2189.

    Article  MATH  Google Scholar 

  11. Hinch, E. J. (1991). Perturbation methods. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  12. Holyer, J. Y. (1979). Large amplitude progressive interfacial waves. Journal of Fluid Mechanics, 93, 433–448.

    Article  MATH  Google Scholar 

  13. Hou, G., Wang, J., & Layton, A. (2012). Numerical methods for fluid- structure interaction - A review. Communications in Computational Physics, 12, 337–377.

    MathSciNet  Google Scholar 

  14. Ito, K., Lai, M. C., & Li, Z. (2007). An augmented approach for Stokes equations with a discontinuous viscosity and singular forces. Computers & Fluids, 36, 622–635.

    Google Scholar 

  15. Lamb, H. (1945). Hydrodynamics. Dover Publications, New York.

    Google Scholar 

  16. LeVeque, R. J., & Li, Z. (1997). Immersed interface method for Stokes flow with elastic boundaries or surface tension. SIAM Journal of Scientific Computing, 18, 709–735.

    Article  MathSciNet  MATH  Google Scholar 

  17. Levi Civita, M. T. (1925). Determination rigoureuse des ondes permanentes d’ampleur finie. Mathematische Annalen, 93, 264–314.

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Z., & Ito, K. (2006). The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. SIAM Frontiers in Applied Mathematics, SIAM, Philadelphia, vol. 33.

    Google Scholar 

  19. Longuet-Higgins, M. S., & Cokelet, E. D. (1976). The deformation of steep surface waves on water, I: A numerical method of computation. Proceedings of the Royal Society Lodon A, 95, 1–26.

    Google Scholar 

  20. Nayfeh, A. H. (1973). Perturbation methods. John Wiley & Sonsy, New York.

    MATH  Google Scholar 

  21. Orszag, S. A. (1971). Numerical simulation of incompressible flows within simple boundaries I: Galerkin (spectral) representations. Studies in Applied Mathematics, 50, 293–327.

    MathSciNet  MATH  Google Scholar 

  22. Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  23. Peyret, R. (2002). Spectral methods for incompressible flow. Springer, New York.

    Book  MATH  Google Scholar 

  24. Scardovelli, R., & Zaleski, S. (1999). Direct numerical simulation of free surface and interfacial flow. Annual Review of Fluid Mechanics, 31, 567–603.

    Article  MathSciNet  Google Scholar 

  25. Schwartz, L. W. (1974). Computer extension and analytic continuation of Stokes’ expansion for gravity waves. Journal of Fluid Mechanics, 62, 553–578.

    Article  MATH  Google Scholar 

  26. Sethian, J. A. (2000). Level set methods and fast marching methods. Cambridge: Cambridge University Press.

    Google Scholar 

  27. Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441–455.

    Google Scholar 

  28. Takada, N., Misawa, M., & Tomiyama A. (2006). A phase-field method for interface-tracking simulation of two-phase flows. Mathematics and Computers in Simulation, 72, 220–226.

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsuji, Y., & Nagata, Y. (1973). Stokes’ expansion of internal deep water waves to the fifth order. Journal of the Oceanographical Society of Japan, 29, 61–69.

    Google Scholar 

  30. Van Dyke, M. (1964). Perturbation methods in fluid mechanics. Academic Press, New York.

    MATH  Google Scholar 

  31. Vinje, T., & Brevig, P. (1981). Numerical simulation of breaking waves. Advances in Water Resources, 4, 77–82.

    Article  Google Scholar 

  32. Wang, J. (2007). Computation of 2D Navier-Stokes equations with moving interfaces by using GMRES. International Journal for Numerical Methods in Fluids, 54, 333–352.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, J. (2007). An asymptotic analysis of linear interfacial motion. Methods and Applications of Analysis, 14, 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, J. (2008). An asymptotic expansion for Stokes waves with viscosity. Fluid Dynamics Research, 40, 155–161.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, J., & Baker, G. (2009). A numerical algorithm for viscous incompressible interfacial flows. Journal of Computational Physics, 228, 5470–5489.

    Article  MathSciNet  MATH  Google Scholar 

  36. Welch, J. E., Harlow, F. H., Shannon, J. P., & Daly, B. J. (1966). The MAC method, Los Alamos Scientific Laboratory Report LA-3425, Los Alamos, New Mexico.

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Drs. B. Toni and Z. Xie for an invited visit at Virginia State University. The author would also like to thank the anonymous reviewers for helpful comments. This work was partially supported by the National Science Foundation under Grant Numbers 1216936 and 1245769, and the Simons Foundation under Grant Number 208716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, J. (2014). Viscous Interfacial Motion: Analysis and Computation. In: Toni, B. (eds) New Frontiers of Multidisciplinary Research in STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health). Springer Proceedings in Mathematics & Statistics, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-07755-0_16

Download citation

Publish with us

Policies and ethics