Skip to main content

The Localization of Inhibitory Neurotransmitter Receptors on Dopaminergic Neurons of the Human Substantia Nigra

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

  • 1412 Accesses

Abstract

The substantia nigra pars compacta (SNc) is comprised mainly of dopaminergic pigmented neurons arranged in groups, with a small population of nonpigmented neurons scattered among these groups. These different types of neurons possess GABAA, GABAB, and glycine receptors. The SNc-pigmented dopaminergic neurons have postsynaptic GABAA receptors (GABAAR) with a subunit configuration containing α3 and γ2 subunits, with a small population of pigmented neurons containing α1 β2,3 γ2 subunits. GABAB receptors comprised of R1 and R2 subunits and glycine receptors are also localized on pigmented neurons. In contrast, nonpigmented (mainly parvalbumin positive neurons) located in the SNc are morphologically and neurochemically similar to substantia nigra pars reticulata (SNr) neurons by showing immunoreactivity for parvalbumin and GABAARs containing immunoreactivity for α1, α3, β2,3, and γ2 subunits as well as GABAB R1 and R2 subunits and glycine receptors. Thus, these two neuronal types of the SNc, either pigmented dopaminergic neurons or nonpigmented parvalbumin positive neurons, have similar GABAB and glycine receptor combinations, but differ mainly in the subunit composition of the GABAARs located on their membranes. The different types of GABAARs suggest that GABAergic inputs to these neuronal types operate through GABAARs with different pharmacological and physiological profiles, whereas GABABR and glycine receptors of these cell types are likely to have similar properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GlyR:

Glycine receptors

GLRA1 :

GlyR α1 gene

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

References

  • Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    CAS  PubMed  Google Scholar 

  • Albers DS, Weiss SW, Iadarola MJ, Standaert DG (1999) Immunohistochemical localization of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience 89(1): 209–220

    Article  CAS  PubMed  Google Scholar 

  • Altschuler RA, Betz H, Parakkal MH, Reeks KA, Wenthold RJ (1986) Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res 369(1–2):316–320

    Article  CAS  PubMed  Google Scholar 

  • Alvarez FJ, Dewey DE, Harrington DA, Fyffe RE (1997) Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. J Comp Neurol 379(1):150–170

    Article  CAS  PubMed  Google Scholar 

  • Anaya-Martinez V, Martinez-Marcos A, Martinez-Fong D, Aceves J, Erlij D (2006) Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: implications for abnormal motor behavior. Neuroscience 143(2):477–486

    Article  CAS  PubMed  Google Scholar 

  • Andrew M, Owen MJ (1997) Hyperekplexia: abnormal startle response due to glycine receptor mutations. Br J Psychiatry 170: 106–108

    Article  CAS  PubMed  Google Scholar 

  • Baer K, Waldvogel HJ, During MJ, Snell RG, Faull RL, Rees MI (2003) Association of gephyrin and glycine receptors in the human brainstem and spinal cord: an immunohistochemical analysis. Neuroscience 122(3):773–784

    Article  CAS  PubMed  Google Scholar 

  • Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA (2006) Startle syndromes. Lancet Neurol 5(6):513–524

    Article  PubMed  Google Scholar 

  • Ball JA, Ghatei MA, Sekiya K, Krausz T, Bloom SR (1989) Diazepam binding inhibitor-like immunoreactivity(51–70): distribution in human brain, spinal cord and peripheral tissues. Brain Res 479(2):300–305

    Article  CAS  PubMed  Google Scholar 

  • Balon N, Kriem B, Dousset E, Weiss M, Rostain JC (2002a) Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats. Brain Res 947(2):218–224

    Article  CAS  PubMed  Google Scholar 

  • Balon N, Kriem B, Weiss M, Rostain JC (2002b) GABA(A) receptors in the pars compacta and GABA(B) receptors in the pars reticulata of rat substantia nigra modulate the striatal dopamine release. Neurochem Res 27(5):373–379

    Article  CAS  PubMed  Google Scholar 

  • Balon N, Kriem B, Weiss M, Rostain JC (2002c) Indirect presynaptic modulation of striatal dopamine release by GABA(B) receptors in the rat substantia nigra. Neurosci Lett 325(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Balon N, Kriem B, Weiss M, Rostain JC (2002d) Indirect presynaptic modulation of striatal dopamine release by GABA(B) receptors in the rat substantia nigra. Neurosci Lett 325(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Benke D, Mertens S, Trzeciak A, Gillessen D, Mohler H (1991) GABAA receptors display association of gamma 2-subunit with alpha 1- and beta 2/3-subunits. J Biol Chem 266(7):4478–4483

    CAS  PubMed  Google Scholar 

  • Benke D, Honer M, Michel C, Mohler H (1996) Gaba(a) receptor subtypes differentiated by their gamma-subunit variants – prevalence, pharmacology and subunit architecture. Neuropharmacology 35(9–10):1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Berthele A, Platzer S, Weis S, Conrad B, Tolle TR (2001) Expression of GABA(B1) and GABA(B2) mRNA in the human brain. Neuroreport 12(15):3269–3275

    Article  CAS  PubMed  Google Scholar 

  • Billinton A, Ige AO, Wise A, White JH, Disney GH, Marshall FH, Waldvogel HJ, Faull RLM, Emson PC (2000) GABA(B) receptor heterodimer-component localisation in human brain. Mol Brain Res 77(1):111–124

    Article  CAS  PubMed  Google Scholar 

  • Bolam JP, Smith Y (1990) The GABA and substance P input to dopaminergic neurones in the substantia nigra of the rat. Brain Res 529:529–578

    Article  Google Scholar 

  • Bonnert TP, McKernan RM, Farrar S, le Bourdelles B, Heavens RP, Smith DW, Hewson L, Rigby MR, Sirinathsinghji DJS, Brown N, Wafford KA, Whiting PJ (1999) Theta, a novel gamma-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci USA 96(17)):9891–9896

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology XXXIII Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54(2):247–264

    Article  CAS  PubMed  Google Scholar 

  • Boyes J, Bolam JP (2007) Localization of GABA receptors in the basal ganglia. Prog Brain Res 160:229–243

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  • Burt DR (2003) Reducing GABA receptors. Life Sci 73(14):1741–1758

    Article  CAS  PubMed  Google Scholar 

  • Cascio M (2002) Glycine receptors: lessons on topology and structural effects of the lipid bilayer. Biopolymers 66(5):359–368

    Article  CAS  PubMed  Google Scholar 

  • Celada P, Paladini CA, Tepper JM (1999) GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata. Neuroscience 89(3):813–825

    Article  CAS  PubMed  Google Scholar 

  • Charles KJ, Evans ML, Robbins MJ, Calver AR, Leslie RA, Pangalos MN (2001) Comparative immunohistochemical localisation of Gaba(B1a), Gaba(B1B) and Gaba(B2) subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106(3):447–467

    Article  CAS  PubMed  Google Scholar 

  • Cheramy A, Nieoullon A, Glowinski J (1978) Inhibition of dopamine release in the cat caudate nucleus by nigral application of glycine. Eur J Pharmacol 47(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • Cobb WS, Abercrombie ED (2002) Distinct roles for nigral GABA and glutamate receptors in the regulation of dendritic dopamine release under normal conditions and in response to systemic haloperidol. J Neurosci 22(4):1407–1413

    CAS  PubMed  Google Scholar 

  • Cobb WS, Abercrombie ED (2002b) Distinct roles for nigral GABA and glutamate receptors in the regulation of dendritic dopamine release under normal conditions and in response to systemic haloperidol. J Neurosci 22(4):1407–1413

    CAS  PubMed  Google Scholar 

  • Colquhoun D, Sivilotti LG (2004) Function and structure in glycine receptors and some of their relatives. Trends Neurosci 27(6): 337–344

    Article  CAS  PubMed  Google Scholar 

  • Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ (1998) Intracellular retention of recombinant GABA(B) receptors. J Biol Chem 273(41):26361–26367

    Article  CAS  PubMed  Google Scholar 

  • de Montis G, Beuamont K, Javoy-Agid F, Agid Y, Constantidinidis J, Lowenthal A, Lloyd KG (1982) Glycine receptors in the human substantia nigra as defined by [3H]Strychnine binding. J Neurochem 38:718–724

    Article  PubMed  Google Scholar 

  • Fallon J, Loughlin S (1995) Substantia Nigra. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, London

    Google Scholar 

  • Faull RL, Mehler WR (1978) The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat. Neuroscience 3(11):989–1002

    Article  CAS  PubMed  Google Scholar 

  • Faull RLM, Villiger JW (1986) Heterogeneous distribution of benzodiazepine receptors in the human striatum: a quantitative autoradiographic study comparing the pattern of receptor labelling with the distribution of acetylcholinesterase staining. Brain Res 381: 153–158

    Article  CAS  PubMed  Google Scholar 

  • Faull RLM, Villiger JW (1988) Multiple benzodiazepine receptors in the human basal ganglia: a detailed pharmacological and anatomical study. Neuroscience 24:433–451

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Mohler H (1995) Gaba(a)-receptor heterogeneity in the adult rat brain – differential regional and cellular distribution of seven major subunits. J Comp Neurol 359(1):154–194

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998) Synapse-specific localization of Nmda and Gaba(a) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390(2):194–210

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin: where do we stand, where do we go? Trends Neurosci 31(5):257–264

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Wichmann T (2007) GABAergic circuits in the basal ganglia and movement disorders. Prog Brain Res 160:287–312

    Article  CAS  PubMed  Google Scholar 

  • Gibb WRG (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson's disease. Brain Res 581(2):283–291

    Article  CAS  PubMed  Google Scholar 

  • Giustizieri M, Bernardi G, Mercuri NB, Berretta N (2005) Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta. J Neurophysiol 94: 1992–2003

    Google Scholar 

  • Griffiths PD, Sambrook MA, Perry R, Crossman AR (1990) Changes in benzodiazepine and acetylcholine receptors in the globus pallidus in Parkinson's disease. J Neurol Sci 100(1–2):131–136

    Article  CAS  PubMed  Google Scholar 

  • Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45(5):727–739

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM (ed) (2004) Substantia nigra and locus coeruleus. Elsevier, London

    Google Scholar 

  • Hebb MO, Robertson HA (2000) Identification of a subpopulation of substantia nigra pars compacta gamma-aminobutyric acid neurons that is regulated by basal ganglia activity. J Comp Neurol 416(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Houser CR, Olsen RW, Richards JG, Mohler H (1988) Immunohistochemical localization of benzodiazepine/GABAA receptors in the human hippocampal formation. J Neurosci 8(4):1370–1383

    CAS  PubMed  Google Scholar 

  • Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen QR, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B) R1 and GABA(B) R2. Nature 396(6712):674–679

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froest W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998a) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396(6712):683–687

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B (1998b) Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci USA 95(25):14991–14996

    Article  CAS  PubMed  Google Scholar 

  • Kerwin RW, Pycock CJ (1979) Specific stimulating effect of glycine on 3H-dopamine efflux from substantia nigra slices of the rat. Eur J Pharmacol 54(1–2):93–98

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Rajput A, Gilbert J, Rozdilsky B, Chang LJ, Shannak K, Hornykiewicz O (1986) Elevated gamma-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson's disease: correlation with striatal dopamine loss. Ann Neurol 20(1):26–31

    Article  CAS  PubMed  Google Scholar 

  • Langosch D, Becker CM, Betz H (1990) The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur J Biochem 194(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Lavoute C, Weiss M, Rostain JC (2007) The role of NMDA and GABA(A) receptors in the inhibiting effect of 3 MPa nitrogen on striatal dopamine level. Brain Res 1176:37–44

    Article  CAS  PubMed  Google Scholar 

  • Loup F, Weinmann O, Yonekawa Y, Aguzzi A, Wieser HG, Fritschy JM (1998) A highly sensitive immunofluorescence procedure for analyzing the subcellular distribution of Gaba(a) receptor subunits in the human brain. J Histochem Cytochem 46(10):1129–1139

    CAS  PubMed  Google Scholar 

  • Luddens H, Korpi ER, Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 34(3):245–254

    Article  CAS  PubMed  Google Scholar 

  • McRitchie DA, Halliday GM, Cartwright H (1995) Quantitative analysis of the variability of substantia nigra pigmented cell clusters in the human. Neuroscience 68(2):539–551

    Article  CAS  PubMed  Google Scholar 

  • McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364(1):121–150

    Article  CAS  PubMed  Google Scholar 

  • Mohler H (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 102(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2(4):240–250

    Article  CAS  PubMed  Google Scholar 

  • Ng TKY, Yung KKL (2000) Distinct cellular distribution of GABA(B) R1 and GABA(A) alpha 1 receptor immunoreactivity in the rat substantia nigra. Neuroscience 99(1):65–76

    Article  CAS  PubMed  Google Scholar 

  • Ng TKY, Yung KKL (2001) Subpopulations of neurons in rat substantia nigra display GABA(B) R2 receptor immunoreactivity. Brain Res 920(1–2):210–216

    Article  CAS  PubMed  Google Scholar 

  • Ng GYK, Bertrand S, Sullivan R, Ethier N, Wang J, Yergey J, Belley M, Trimble L, Bateman K, Alder L, Smith A, McKernan R, Metters K, O'Neill GP, Lacaille JC, Hebert TE (2001) Gamma-Aminobutyric acid type B receptors with specific heterodimer. Mol Pharmacol 59(1):144–152

    CAS  PubMed  Google Scholar 

  • Nicholson LF, Faull RL, Waldvogel HJ, Dragunow M (1992) The regional, cellular and subcellular localization of GABAA/benzodiazepine receptors in the substantia nigra of the rat. Neuroscience 50(2):355–370

    Article  CAS  PubMed  Google Scholar 

  • Nicholson LF, Faull RL, Waldvogel HJ, Dragunow M (1995) GABA and GABAA receptor changes in the substantia nigra of the rat following quinolinic acid lesions in the striatum closely resemble Huntington's disease. Neuroscience 66(3):507–521

    Article  CAS  PubMed  Google Scholar 

  • Nitsch C, Riesenberg R (1988) Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection. Brain Res 461:127–142

    Article  CAS  PubMed  Google Scholar 

  • Olsen RW, Wamsley JK, McCabe RT, Lee RJ, Lomax P (1985) Benzodiazepine/gamma-aminobutyric acid receptor deficit in the midbrain of the seizure-susceptible gerbil. Proc Natl Acad Sci USA 82(19):6701–6705

    Article  CAS  PubMed  Google Scholar 

  • Paladini CA, Celada P, Tepper JM (1999a) Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABA(A) receptors in vivo. Neuroscience 89(3):799–812

    Article  CAS  PubMed  Google Scholar 

  • Paladini CA, Iribe Y, Tepper JM (1999b) GABA(A) receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance. Brain Res 832(1–2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Paladini CA, Iribe Y, Tepper JM (1999c) GABA(A) receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance. Brain Res 832(1–2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Petri S, Krampel K, Dengler R, Bufler J, Weindl A, Arzberger T (2002) Human GABA(A) receptors on dopaminergic neurons in the pars compacta of the substantia nigra. J Comp Neurol 452(4):360–366

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer F, Simler R, Grenningloh G, Betz H (1984) Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc Natl Acad Sci USA 81:7224–7227

    Article  CAS  PubMed  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in. Neuroscience 101(4):815–850

    Article  CAS  PubMed  Google Scholar 

  • Probst A, Cortes R, Palacios JM (1986) The distribution of glycine receptors in the human brain. A light microscopic autoradiographic study using strychnine. Neuroscience 17(1):11–35

    Article  CAS  PubMed  Google Scholar 

  • Rajendra S, Lynch JW, Schofield PR (1997) The glycine receptor. Pharmacol Ther 73(2):121–146

    Article  CAS  PubMed  Google Scholar 

  • Rampon C, Luppi PH, Fort P, Peyron C, Jouvet M (1996) Distribution of glycine-immunoreactive cell bodies and fibers in the rat brain. Neuroscience 75(3):737–755

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Andrew M, Jawad S, Owen MJ (1994) Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the alpha 1 subunit of the inhibitory glycine receptor. Hum Mol Genet 3(12):2175–2179

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Lewis TM, Vafa B, Ferrie C, Corry P, Muntoni F, Jungbluth H, Stephenson JB, Kerr M, Snell RG, Schofield PR, Owen MJ (2001) Compound heterozygosity and nonsense mutations in the alpha(1)-subunit of the inhibitory glycine receptor in hyperekplexia. Hum Genet 109(3):267–270

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Lewis TM, Kwok JB, Mortier GR, Govaert P, Snell RG, Schofield PR, Owen MJ (2002) Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11(7):853–860

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Harvey K, Ward H, White JH, Evans L, Duguid IC, Hsu CC, Coleman SL, Miller J, Baer K, Waldvogel HJ, Gibbon F, Smart TG, Owen MJ, Harvey RJ, Snell RG (2003) Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem 278(27):24688–24696

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, Beatty S, Graham GE, Armstrong L, Shiang R, Abbott KJ, Zuberi SM, Stephenson JB, Owen MJ, Tijssen MA, van den Maagdenberg AM, Smart TG, Supplisson S, Harvey RJ (2006) Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38(7):801–806

    Article  CAS  PubMed  Google Scholar 

  • Reisine TD, Overstreet D, Gale K, Rossor M, Iversen L, Yamamura HI (1980) Benzodiazepine receptors: the effect of GABA on their characteristics in human brain and their alteration in Huntington's disease. Brain Res 199(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Pallares J, Caruncho HJ, Lopez-Real A, Wojcik S, Guerra MJ, Labandeira-Garcia JL (2001) Rat brain cholinergic, dopaminergic, noradrenergic and serotonergic neurons express GABAA receptors derived from the alpha3 subunit. Recept Channels 7(6):471–478

    CAS  PubMed  Google Scholar 

  • Rudolph U, Mohler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    Article  CAS  PubMed  Google Scholar 

  • Saitoh K, Isa T, Takakusaki K (2004) Nigral GABAergic inhibition upon mesencephalic dopaminergic cell groups in rats. Eur J Neurosci 19(9):2399–2409

    Article  PubMed  Google Scholar 

  • Sanchez MP, Dietl MM, De Blas AL, Palacios JM (1991) Mapping of benzodiazepine-like immunoreactivity in the rat brain as revealed by a monoclonal antibody to benzodiazepines. J Chem Neuroanat 4(2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Santiago M, Westerink B (1992) The role of GABA receptors in the control of nigrostriatal dopaminergic neurons:dual-probe microdialysis study in awake rats. Eur J Pharmacol 219:175–181

    Article  CAS  PubMed  Google Scholar 

  • Santiago M, Westerink BH (1992b) The role of GABA receptors in the control of nigrostriatal dopaminergic neurons: dual-probe microdialysis study in awake rats. Eur J Pharmacol 219(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Scheffer IE, Berkovic SF (2003) The genetics of human epilepsy. Trends Pharmacol Sci 24(8):428–433

    Article  CAS  PubMed  Google Scholar 

  • Schoch P, Richards JG, Haring P, Takacs B, Stahli C, Haefely W, Mohler H (1985) Co-localisation of GABAA receptors in the brain shown by monoclonal antibodies. Nature 314:168–171

    Article  CAS  PubMed  Google Scholar 

  • Schroder S, Hoch W, Becker CM, Grenningloh G, Betz H (1991) Mapping of antigenic epitopes on the alpha 1 subunit of the inhibitory glycine receptor. Biochem 30(1):42–47

    Article  CAS  Google Scholar 

  • Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, Sperk G (2001) Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 433(4):526–549

    Article  CAS  PubMed  Google Scholar 

  • Shiang R, Ryan SG, Zhu YZ, Hahn AF, O'Connell P, Wasmuth JJ (1993) Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5(4):351–358

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387

    Article  CAS  PubMed  Google Scholar 

  • Sohal VS, Keist R, Rudolph U, Huguenard JR (2003) Dynamic GABA(A) receptor subtype-specific modulation of the synchrony and duration of thalamic oscillations. J Neurosci 23(9):3649–3657

    CAS  PubMed  Google Scholar 

  • Speth RC, Wastek GJ, Johnson PC, Yamamura HI (1978) Benzodiazepine binding in human brain: characterization using [3H]flunitrazepam. Life Sci 22(10):859–866

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Lee CR (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res 160:189–208

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15: 3092–3103

    CAS  PubMed  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995b) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15(4):3092–3103

    CAS  PubMed  Google Scholar 

  • Tepper JM, Abercrombie ED, Bolam JP (2007) Basal ganglia macrocircuits. Prog Brain Res 160:3–7

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Fritschy JM, Mohler H, Faull RLM (1998) Gaba(a) Receptors in the primate basal ganglia – an autoradiographic and a light and electron microscopic immunohistochemical study of the alpha(1) and beta(2, 3) subunits in the baboon brain. J Comp Neurol 397(3):297–325

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Kubota Y, Fritschy JM, Mohler H, Faull RLM (1999) Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: an autoradiographic and immunohistochemical study. J Comp Neurol 415(3):313–340

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Baer K, Snell RG, During MJ, Faull RLM, Rees MI (2003) Distribution of gephyrin in the human brain: an immunohistochemical analysis. Neuroscience 116(1):145–156

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RL (2004) Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha 1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 470(4):339–356

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Curtis MA, Baer K, Rees MI, Faull RL (2006) Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc 1(6):2719–2732

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Baer K, Allen KL, Rees MI, Faull RL (2007a) Glycine receptors in the striatum, globus pallidus, and substantia nigra of the human brain: an immunohistochemical study. J Comp Neurol 502(6):1012–1029

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Curtis MA, Baer K, Rees MI, Faull RLM (2007b) Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc 1(6):2719–2732

    Article  CAS  Google Scholar 

  • Waldvogel HJ, Baer K, Gai WP, Gilbert RT, Rees MI, Mohler H, Faull RL (2008a) Differential localization of GABAA receptor subunits within the substantia nigra of the human brain: an immunohistochemical study. J Comp Neurol 506(6):912–929

    Article  CAS  PubMed  Google Scholar 

  • Waldvogel HJ, Bullock JY, Synek BJ, Curtis MA, van Roon-Mom WM, Faull RL (2008b) The collection and processing of human brain tissue for research. Cell Tissue Bank 9(3):169–179

    Article  CAS  PubMed  Google Scholar 

  • Wedzony K, Czepiel K, Fijal K (2001) Immunohistochemical evidence for localization of NMDAR1 receptor subunit on dopaminergic neurons of the rat substantia nigra, pars compacta. Pol J Pharmacol 53(6):675–679

    CAS  PubMed  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396(6712):679–682

    Article  CAS  PubMed  Google Scholar 

  • Ye JH, Wang F, Krnjevic K, Wang W, Xiong ZG, Zhang J (2004) Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area. J Neurosci 24(41):8961–8974

    Article  CAS  PubMed  Google Scholar 

  • Young WS 3rd, Kuhar MJ (1980) Radiohistochemical localization of benzodiazepine receptors in rat brain. J Pharmacol Exp Ther 212(2):337–346

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HJ Waldvogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Waldvogel, H., Baer, K., Faull, R. (2009). The Localization of Inhibitory Neurotransmitter Receptors on Dopaminergic Neurons of the Human Substantia Nigra. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_5

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics