Skip to main content

The Nigrostriatal Pathway: Axonal Collateralization and Compartmental Specificity

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

Abstract

This paper reviews two of the major features of the nigrostriatal pathway, its axonal collateralization, and compartmental specificity, as revealed by single-axon labeling experiments in rodents and immunocytological analysis of human postmortem tissue. The dorsal and ventral tiers of the substantia nigra pars compacta harbor various types of neurons the axons of which branch not only within the striatum but also in other major components of the basal ganglia. Furthermore, some nigrostriatal axons send collaterals both to thalamus and to brainstem pedunculopontine tegmental nucleus. In humans, the compartmental specificity of the nigrostriatal pathway is revealed by the fact that the matrix compartment is densely innervated by dopaminergic fibers, whereas the striosomes display different densities of dopaminergic terminals depending on their location within the striatum. The nigral neurons most severely affected in Parkinson's disease are the ventral tier cells that project to the matrix and form deep clusters in the substantia nigra pars reticulata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Anterior

ac:

Anterior commissure

CB:

Calbindin

CC:

Corpus callosum

CN:

Caudate nucleus

cp:

Cerebral peduncle

CPu:

Caudate-putamen

D:

Dorsal

DA:

Dopaminergic

ENK:

Enkephalin

EP:

Entopeducular nucleus

FF:

Fields of Forel

Fr 2:

Frontal cortex, area 2

FStr:

Fundus striate

GP:

Globus pallidus

ic:

Internal capsule

ir:

Immunoreactive

L:

Lateral

LAMP:

Limbic system-associated membrane protein

LPB:

Lateral parabrachial nucleus

LV:

Lateral ventricle

M:

Striatal matrix compartment

ml:

Medial lemniscus

MPB:

Medial parabrachial nucleus

MPTP:

N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MT:

Medial terminal nucleus of the accessory optic tract

NADPH-d:

Nicotinamide adenine dinucleotide phosphate reduced-diaphorase

PC:

Paracentral thalamic nucleus

PD:

Parkinson's disease

PnO:

Pontine reticular nucleus

Put:

Putamen

RN:

Red nucleus

RRF:

Retrorubral field

S:

Striosome

SS:

Subcallosal streak

scp:

Superior cerebellar peduncle

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

SS:

Subcallosal streak

STN:

Subthalamic nucleus

SubI:

Subincertal nucleus

Th:

Thalamus

TH:

Tyrosine hydroxylase

VL:

Ventrolateral thalamic nucleus

VM:

Ventromedial thalamic nucleus

VTA:

Ventral tegmental area

ZI:

Zona incerta

References

  • Berger B, Tassin JP, Blanc G, Moyne MA, Thierry AM (1974) Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res 81:332–337

    Article  CAS  PubMed  Google Scholar 

  • Bernácer J, Prensa L, Giménez-Amaya JM (2008) Chemical architecture of the posterior striatum in the human brain. J Neural Transm 115:67–75

    Article  PubMed  Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, Classical transmitters in the CNS, Part I. Elsevier, Amsterdam

    Google Scholar 

  • Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 5:71–82

    CAS  PubMed  Google Scholar 

  • Cebrián C, Parent A, Prensa L (2005) Patterns of axonal branching of neurons of the substantia nigra pars reticulata and pars lateralis in the rat. J Comp Neurol 492:349–369

    Article  PubMed  Google Scholar 

  • Cebrián C, Parent A, Prensa L (2007) The somatodendritic domain of substantia nigra pars reticulata projection neurons in the rat. Neurosci Res 57:50–60

    Article  PubMed  Google Scholar 

  • Cossette M, Lévesque M, Parent A (1999) Extrastriatal dopaminergic innervation of the human basal ganglia. Neurosci Res 34:51–54

    Article  CAS  PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(Suppl 232):1–55

    Google Scholar 

  • Donoghue JP, Herkenham M (1986) Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res 365:397–403

    Article  CAS  PubMed  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013

    CAS  PubMed  Google Scholar 

  • Fallon JH, Loughlin SE (1985) The substantia nigra. In: Paxinos G, Watson J (eds) The rat central nervous system: A handbook for neuroscientists. Academic Press, Sydney

    Google Scholar 

  • Fallon JH, Loughlin SE (1987) Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. In: Jones EG, Peters A (eds) cerebral cortex. Plenum, New York

    Google Scholar 

  • Fallon JH, Loughlin SE (1995) Substantia nigra. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Tophography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580

    Article  CAS  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  • Francois C, Percheron G, Yelnik J, Heyner S (1985) A histological atlas of the macaque (Macaca mulatta) substantia nigra in ventricular coordinates. Brain Res Bull 14:349–367

    Article  CAS  PubMed  Google Scholar 

  • Gauthier J, Parent M, Lévesque M, Parent A (1999) The axonal arborization of single nigrostriatal neurons in rats. Brain Res 834:228–232

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: Compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 82:8780–8784

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Baimbridge KG, Thibault J (1987a) The neostriatal mosaic: III Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 7:3935–3944

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987b) The neostriatal mosaic: II Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Björkulnd A, Hökfelt T (eds) Handbook of Chemical Anatomy, Integrated Systems in the CNS, Part III. Elsevier, Amsterdam

    Google Scholar 

  • Gibb WR, Fearnley JM, Lees AJ (1990) The anatomy and pigmentation of the human substantia nigra in relation to selective neuronal vulnerability. Adv Neurol 53:31–34

    CAS  PubMed  Google Scholar 

  • Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatr 54:388–396

    Article  CAS  PubMed  Google Scholar 

  • Giménez-Amaya JM, Prensa L, Uroz V, Huerta I (2004) Morfología del sistema dopaminérgico. In: Baca Baldomero E, Roca Bennasar M (eds) Esquizofrenia y Dopamina. Ediciones Mayo, Barcelona

    Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Chesselet MF (1984) Compartmental distribution of striatal cell bodies expressing [Met] enkephalin-like immunoreactivity. Proc Natl Acad Sci USA 81:7980–7984

    Article  CAS  PubMed  Google Scholar 

  • Guyenet PG, Crane JK (1981) Non-dopaminergic nigrostriatal pathway. Brain Res 213:291–305

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362:400–410

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11:323–342

    CAS  PubMed  Google Scholar 

  • Haber SN, Johnson Gdowski M (2004) The Basal Ganglia. In: Paxinos G, Mai JK (eds) The Human Nervous System, 2nd edn. Elsevier, San Diego, CA

    Google Scholar 

  • Halliday GM, Törk I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252:423–445

    Article  CAS  PubMed  Google Scholar 

  • Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409:400–410

    Article  CAS  PubMed  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334:345–348

    Article  CAS  PubMed  Google Scholar 

  • Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    Article  CAS  PubMed  Google Scholar 

  • Hontanilla B, de las Heras S, Giménez-Amaya JM (1996) A topographic re-evaluation of the nigrostriatal projections to the caudate nucleus in the cat with multiple retrograde tracers. Neuroscience 72:485–503

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Castellanos J, Graybiel AM (1987) Subdivisions of the dopamine-containing A8–A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix. Neuroscience 23:223–242

    Article  CAS  PubMed  Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:451–474

    Article  CAS  PubMed  Google Scholar 

  • Johnston JG, Gerfen CR, Haber SN, Van der Kooy D (1990) Mechanism of striatal pattern formation: conservation of mammalian compartmentalization. Dev Brain Res 57:93–102

    Article  CAS  Google Scholar 

  • Kolmac CI, Mitrofanis J (1998) Patterns of brainstem projection to the thalamic reticular nucleus. J Comp Neurol 396:531–543

    Article  CAS  PubMed  Google Scholar 

  • Langer LF, Graybiel AM (1989) Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Res 498:344–350

    Article  CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 2:601–604

    Article  CAS  PubMed  Google Scholar 

  • Lévesque M, Wallman MJ, Parent A (2004) Striosomes are enriched in glutamic acid decarboxylase in primates. Neurosci Res 50:29–35

    Article  PubMed  Google Scholar 

  • Levitt P (1984) A monoclonal antibody to limbic system neurons. Science 223:299–301

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Björklund A, Divac I (1977) Organization of mesencephalic dopamine neurons projecting to neocortex and septum. Adv Biochem Psychopharmacol 16:39–46

    CAS  PubMed  Google Scholar 

  • Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the ventral striatum in the primate. Neuroscience 59: 609–623

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ, Hadfield MG, Dellovade TL, Price DL (1991) The striatal mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum. Neuroscience 43:397–417

    Article  CAS  PubMed  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the Human Brainstem. Karger, Basel, New York

    Google Scholar 

  • Parent A, Lavoie B (1993) The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and parkinsonian monkeys. Adv Neurol 60:25–33

    CAS  PubMed  Google Scholar 

  • Parent A, Sato F, Wu Y, Gauthier J, Lévesque M, Parent M (2000) Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 23(10 Suppl):S20–S27

    Article  CAS  PubMed  Google Scholar 

  • Parent M, Parent A (2004) The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord 10:203–211

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2006) Relationship between axonal collateralization and neuronal degeneration in basal ganglia. J Neural Transm Suppl 70:85–88

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, Sydney

    Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44:591–605

    Article  CAS  PubMed  Google Scholar 

  • Poirier LJ, Giguere M, Marchand R (1983) Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat. Brain Res Bull 11:371–397

    Article  CAS  PubMed  Google Scholar 

  • Prensa L, Giménez-Amaya JM, Parent A (1999) Chemical heterogeneity of the striosomal compartment in the human striatum. J Comp Neurol 413:603–618

    Article  CAS  PubMed  Google Scholar 

  • Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213

    Article  CAS  PubMed  Google Scholar 

  • Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21:7247–7260

    CAS  PubMed  Google Scholar 

  • Preston RJ, McCrea RA, Chang HT, Kitai ST (1981) Anatomy and physiology of substantia nigra and retrorubral neurons studies by extra- and intracellular recording and by horseradish peroxidase labeling. Neuroscience 6:331–344

    Article  CAS  PubMed  Google Scholar 

  • Rinne JO (1993) Nigral degeneration in Parkinson's disease. Mov Disord 8(Suppl 1):S31–S35

    Article  PubMed  Google Scholar 

  • Song DD, Haber SN (2000) Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. J Neurosci 20:5102–5114

    CAS  PubMed  Google Scholar 

  • Van der Kooy D (1979) The organization of thalamic, nigral and raphe cells projecting to the medial vs lateral caudate putamen in rat. A fluorescent retrograde double labeling study. Brain Res 169:381–387

    Article  PubMed  Google Scholar 

  • Yelnik J, Francois C, Percheron G, Heyner S (1987) Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons. J Comp Neurol 265:455–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (Expte: PI070199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Prensa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Prensa, L., Giménez-Amaya, J.M., Parent, A., Bernácer, J., Cebrián, C. (2009). The Nigrostriatal Pathway: Axonal Collateralization and Compartmental Specificity. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_4

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics