Skip to main content

Age and Parkinson’s Disease-Related Neuronal Death in the Substantia Nigra Pars Compacta

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

Abstract

During aging, decline in memory and cognitive abilities as well as motor weakening is of great concern. The dopaminergic system mediates some aspects of manual dexterity, in addition to cognition and emotion, and may be especially vulnerable to aging. A common neurodegenerative disorder of this system, Parkinson’s disease, is characterized by a selective, progressive loss of dopaminergic neurons in the substantia nigra pars compacta. This review includes studies quantifying age and Parkinson’s-related changes of the substantia nigra, with emphasis on stereological studies performed in the substantia nigra pars compacta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MPTP:

1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine

DA-ergic:

Dopaminergic

GABA:

Gamma-aminobutyric acid

VTApn:

Paranigral part of VTA

PD:

Parkinson’s disease

SNpc:

SN pars compacta

SNpr:

SN pars reticularis

SN:

Substantia nigra

SNCA:

Synuclein alpha

TH+:

Tyrosine hydroxylase-positive

VTA:

Ventral tegmental area

References

  • Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sørensen P (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56:730–736

    Google Scholar 

  • Aguirre JA, Andbjer B, Gonzalez-Baron S, Hansson A, Stromberg I, Agnati LF, Fuxe K (2001) Group I mGluR antagonist AIDA protects nigral DA cells from MPTP-induced injury. Neuroreport 12:2615–2617

    CAS  PubMed  Google Scholar 

  • Anglade P, Vyas S, Hirsch EC, Agid Y (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12:603–610

    CAS  PubMed  Google Scholar 

  • Antonini A, Leenders KL (1993) Dopamine D2 receptors in normal human brain: effect of age measured by positron emission tomography (PET) and [11C]-raclopride. Ann NY Acad Sci 695:81–85

    CAS  PubMed  Google Scholar 

  • Arranz B, Blennow K, Ekman R, Eriksson A, Mansson JE, Marcusson J (1996) Brain monoaminergic and neuropeptidergic variations in human aging. J Neural Transm 103:101–115

    CAS  PubMed  Google Scholar 

  • Bannon MJ, Poosch MS, Xia Y, Goebel DJ, Cassin B, Kapatos G (1992) Dopamine transporter mRNA content in human substantianigra decreases precipitously with age. Proc Natl Acad Sci USA 89:7095–7099

    CAS  PubMed  Google Scholar 

  • Barcia C, Sanchez Bahillo A, Fernandez-Villalba E, Bautista V, Poza YPM, Fernandez-Barreiro A, Hirsch EC, Herrero MT (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–409

    PubMed  Google Scholar 

  • Bossers K, Meerhoff G, Balesar R, van Dongen JW, Kruse CG, Swaab DF, Verhaagen J (2008) Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol 19:91–107

    PubMed  Google Scholar 

  • Braak H, Goebel HH (1979) Pigmentoarchitectonic pathology of the isocortex in juvenile neural ceroid-lipofuscinosis: axonal enlargements in layer II and cell loss in layer V. Acta Neuropathol 46:79–83

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291

    CAS  PubMed  Google Scholar 

  • Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA (2003) Dopamine neurotoxicity: age-dependent behavioral and histological effects. Neurobiol Aging 24:697–706

    CAS  PubMed  Google Scholar 

  • Canudas AM, Friguls B, Planas AM, Gabriel C, Escubedo E, Camarasa J, Camins A, Pallas M (2000) MPP(+) injection into rat substantia nigra causes secondary glial activation but not cell death in the ipsilateral striatum. Neurobiol Dis 7:343–361

    CAS  PubMed  Google Scholar 

  • Cao S, Gelwix CC, Caldwell KA, Caldwell GA (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of caenorhabditis elegans. J Neurosci 25(15):3801–3812

    CAS  PubMed  Google Scholar 

  • Carlsson A (1987) Brain neurotransmitters in aging and dementia: similar changes across diagnostic dementia groups. Gerontology 33:159–167

    CAS  PubMed  Google Scholar 

  • Carlsson A, Winblad B (1976) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J Neural Transm 38:271–276

    CAS  PubMed  Google Scholar 

  • Chadi G, Moller A, Rosen L, Janson AM, Agnati LA, Goldstein M, Ogren SO, Pettersson RF, Fuxe K (1993) Protective actions of human recombinant basic fibroblast growth factor on MPTP lesioned nigrostriatal dopamine neurons after intraventricular infusion. Exp Brain Res 97:145–158

    CAS  PubMed  Google Scholar 

  • Chen EY, Kallwitz E, Leff SE, Cochran EJ, Mufson EJ, Kordower JH, Mandel RJ (2000) Age-related decreases in GTP-cyclohydrolase- I immunoreactive neurons in the monkey and human substantia nigra. J Comp Neurol 426:534–548

    CAS  PubMed  Google Scholar 

  • Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25:134–149

    CAS  PubMed  Google Scholar 

  • Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH (2002) Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comp Neurol 450:203–214

    CAS  PubMed  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328

    CAS  PubMed  Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Markakis D (1984) Striatal dopamine receptors in Alzheimer-type dementia. Neurosci Lett 52:1–6

    CAS  PubMed  Google Scholar 

  • Cruz-Sánchez FF, Cardozo A, Tolosa E (1995) Neuronal changes in the substantia nigra with aging: a Golgi study. J Neuropathol Exp Neurol 54:74–81

    PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:420742–442081

    Google Scholar 

  • De Keyser J, Ebinger G, Vauquelin G (1990) Age-related changes in the human nigrostriatal dopaminergic system. Ann Neurol 27:157–161

    PubMed  Google Scholar 

  • De Keyser J, De Backer JP, Vauquelin G, Ebinger G (1991) D1 and D2 dopamine receptors in human substantia nigra: localization and the effect of aging. J Neurochem 56:1130–1133

    PubMed  Google Scholar 

  • Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH (1998) Age-related declines in nigral neuronal function correlate with motor impairments in Rhesus monkeys. J Comp Neurol 401:253–265

    CAS  PubMed  Google Scholar 

  • Esiri MM, Hyman BT, Beyreuther K, Masters CL (1997) Ageing and dementia. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, vol 2. Arnold, London, pp 153–233

    Google Scholar 

  • Faraldi F, Reyes MG, Alfieri E, Levi AC (1994) The aging substantia nigra: quantitative histologic study. Panminerva Med 36:103–108

    CAS  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectively. Brain 114:2283–2301

    PubMed  Google Scholar 

  • Felberg RA, Grotta JC, Shirzadi AL, Strong R, Narayana P, Hill-Felberg SJ, Aronowski J (2002) Cell death in experimental intracerebral hemorrhage: the “black hole” model of hemorrhagic damage. Ann Neurol 51:517–524

    PubMed  Google Scholar 

  • Finch CE (1993) Neuroatrophy during aging: programmed or sporadic? Trends Neurosci 16:104–110

    CAS  PubMed  Google Scholar 

  • Gao JP, Sun S, Li WW, Chen YP, Cai DF (2008) Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: Implication for immunosuppressive therapy in Parkinson’s disease. Neurosci Bull 24(3):133–142

    CAS  PubMed  Google Scholar 

  • Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80:168–177

    CAS  PubMed  Google Scholar 

  • German DC, Dubach M, Askari S, Speciale SG, Bowden DM (1988) 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: Which midbrain dopaminergic neurons are lost? Neuroscience 24:161–174

    CAS  PubMed  Google Scholar 

  • Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396

    CAS  PubMed  Google Scholar 

  • Giovannelli L, Decorosi F, Dolara P, Pulvirenti L (2003) Vulnerability to DNA damage in the aging rat substantia nigra: a study with the comet assay. Brain Res 969:244–247

    CAS  PubMed  Google Scholar 

  • Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamaichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, Barlowe C, Lindquist S (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA 105(1):145–150

    CAS  PubMed  Google Scholar 

  • Godefroy F, Bassant MH, Weil-Fugazza J, Lamour Y (1989) Age related changes in dopaminergic and serotonergic indices in the rat forebrain. Neurobiol Aging 10:187–190

    CAS  PubMed  Google Scholar 

  • Greenwood CE, Tatton WG, Seniuk NA, Biddle FG (1991) Increased dopamine synthesis in aging substantia nigra neurons. Neurobiol Aging 12(5):557–565

    CAS  PubMed  Google Scholar 

  • Gundersen HJG (1985) Stereology of arbitrary particles: a review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thomsen J Microsc 143:3–45

    Google Scholar 

  • Himi T, Cao M, Mori N (1995) Reduced expression of the molecular markers of dopaminergic neuronal atrophy in the aging rat brain. J Gerontol A Biol Sci Med Sci 50:B193–B200

    CAS  PubMed  Google Scholar 

  • Hol EM, van Leeuwen FW, Fisher DF (2005) The proteasome in Alzheimer’s disease and Parkinson’s disease: lessons from ubiquitin B + 1. Trends Mol Med 11:488–495

    CAS  PubMed  Google Scholar 

  • Irwin I, DeLanney LE, McNeill T, Chan P, Forno LS, Murphy GM Jr, Di Monte DA, Sandy MS, Langston JW (1994) Aging and the nigrostriatal dopamine system: a non-human primate study. Neurodegeneration 3(4):251–265

    CAS  PubMed  Google Scholar 

  • Itoh K, Weis S, Mehraein P, Muller-Hocker J (1996) Cytochrome c oxidase defects of the human substantia nigra in normal aging. Neurobiol Aging 17:843–848

    CAS  PubMed  Google Scholar 

  • Jagadha V, Becker LE (1988) Brain morphology in Duchenne muscular dystrophy: a Golgi study. Pediatr Neurol 4:87–92

    CAS  PubMed  Google Scholar 

  • Kaasinen V, Rinne JO (2002) Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci Biobehav Rev 26:785–793

    CAS  PubMed  Google Scholar 

  • Kanaan NM, Kordower JH, Collier TJ (2007) Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: Relevance to selective neuronal vulnerability. J Comp Neurol 502:683–700

    PubMed  Google Scholar 

  • Kanaan NM, Kordower JH, Collier TJ (2008) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4phenyl-1, 2, 3, 4-tetrahydropyridine exposure in monkeys. Glia 56(11):1199–1214

    PubMed  Google Scholar 

  • Katzung BG (1998) Introduction to autonomic pharmacology. In: Katzung BG (ed) Basic and clinical pharmacology. Appleton and Lange, Stamford

    Google Scholar 

  • Kemppainen N, Roytta M, Collan Y, Ma SY, Hinkka S, Rinne JO (2002) Unbiased morphological measurements show no neuronal loss in the substantia nigra in Alzheimer’s disease. Acta Neuropathol 103:43–47

    CAS  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Rajput A, Deck JH, Hornykiewicz O (1992) Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J Neurochem 58:642–648

    CAS  PubMed  Google Scholar 

  • Kitt CA, Cork LC, Eidelberg F, Joh TH, Price DL (1986) Injury of nigral neurons exposed to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridin: a tyrosine hydroxylase immunocytochemical study in monkey. Neurosci 17(4):1089–1103

    CAS  Google Scholar 

  • Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation 5:8

    PubMed  Google Scholar 

  • Kubis N, Faucheux BA, Ransmayr G, Damier P, Duyckaerts C, Henin D, Forette B, Le Charpentier Y, Hauw J-J, Agid Y, Hirsch EC (2000) Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 123:366–373

    PubMed  Google Scholar 

  • Lai H, Bowden DM, Horita A (1987) Age-related decreases in dopamine receptors in the caudate nucleus and putamen of therhesus monkey (Macaca mulatta). Neurobiol Aging 8:45–49

    CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    CAS  PubMed  Google Scholar 

  • Luo Y, Roth GS (2000) The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antioxid Redox Signal 2:449–460

    CAS  PubMed  Google Scholar 

  • Ma SY, Roytt M, Rinne JO, Collan Y, Rinne UK (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using disector counts. J Neurol Sci 151:83–87

    CAS  PubMed  Google Scholar 

  • Ma SY, Ciliax BJ, Stebbins G, Jaffar S, Joyce JN, Cochran EJ, Kordower JH, Mash DC, Levey AI, Mufson EJ (1999a) Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol 409:25–37

    CAS  PubMed  Google Scholar 

  • Ma SY, Roytt M, Collan Y, Rinne JO (1999b) Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399

    CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO (1974) Lipoprotein pigments – their relationship to ageing in the human nervous system. II. The melanin content of pigmented nerve cells. Brain 97:489–498

    CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO (1979) The effects of ageing on the pigmented nerve cells of the human locus caeruleous and substantia nigra. Acta Neuropathol 47:93–97

    CAS  PubMed  Google Scholar 

  • McCormack AL, Di Monte DA, Delfani K, Irwin I, DeLanney LE, Langston WJ, Janson AM (2004) Aging of the nigrostriatal system in the squirrel monkey. J Comp Neurol 471(4):387–395

    PubMed  Google Scholar 

  • McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal function. Arch Neurol 34:33–35

    CAS  PubMed  Google Scholar 

  • Mesco ER, Carlson SG, Joseph JA, Roth GS (1993) Decreased striatal D2 dopamine receptor mRNA synthesis during aging. Brain Res Mol Brain Res 17:160–162

    CAS  PubMed  Google Scholar 

  • Miller GW, Staley JK, Heilman CJ, Perez JT, Mash DC, Rye DB, Levey AI (1997) Immuno-chemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 41:530–539

    CAS  PubMed  Google Scholar 

  • Møller A (1992) Mean volume of pigmented neurons in the substantia 630 nigra in Parkinson’s disease. Acta Neurol Scand Suppl 137:37–39

    PubMed  Google Scholar 

  • Morgan DG, Finch CE (1988) Dopaminergic changes in the basal ganglia. A generalized phenomenon of aging in mammals. Ann NY Acad Sci 515:145–160

    CAS  PubMed  Google Scholar 

  • Morgan DG, Marcusson JO, Nyberg P, Wester P, Winblad B, Gordon MN, Finch CE (1987) Divergent changes in D-1 and D-2 dopamine binding sites in human brain during aging. Neurobiol Aging 8:195–201

    CAS  PubMed  Google Scholar 

  • Muthane U, Yasha TC, Shankar SK (1998) Low numbers and no loss of melanized nigral neurons with increasing age in normal human brains from India. Ann Neurol 43:283–287

    CAS  PubMed  Google Scholar 

  • Nabeshima T, Yamada K, Hayashi T, Hasegawa T, Ishihara S, Kameyama T, Morimasa T, Kaneyuki T, Shohmori T (1994) Changes in muscarinic cholinergic, PCP, GABAA, D1, and 5-HT2A receptor binding, but not in benzodiazepine receptor binding in the brains of aged rats. Life Sci 55:1585–1593

    CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W (1999) Cell death of dopamine neurons in aging and Parkinson’s disease. Mech Ageing Dev 111:175–188

    CAS  PubMed  Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the Cavalieri and optical disector methods. J Comp Neurol 366:580–599

    CAS  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    CAS  PubMed  Google Scholar 

  • Pakkenberg B, Møller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33

    CAS  PubMed  Google Scholar 

  • Pakkenberg H, Andersen BB, Burns RS, Pakkenberg B (1995) A stereological study of substantia nigra in young and old rhesus monkeys. Brain Res 693:201–206

    CAS  PubMed  Google Scholar 

  • Perl DP, Good PF, Bussiere T, Morrison JH, Erwin JM, Hof PR (2000) Practical approaches to stereology in the setting of aging- and disease-related brain banks. J Chem Neuroanat 20:7–19

    CAS  PubMed  Google Scholar 

  • Reeves S, Bench C, Howard R (2002) Ageing and the nigrostriatal dopaminergic system. Int J Geriatr Psychiatry 17:359–370

    CAS  PubMed  Google Scholar 

  • Rinne JO (1987) Muscarinic and dopaminergic receptors in the aging human brain. Brain Res 404:162–168

    CAS  PubMed  Google Scholar 

  • Rinne JO, Lonnberg P, Marjamaki P (1990) Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res 508: 349–352

    CAS  PubMed  Google Scholar 

  • Rinne JO, Hietala J, Ruotsalainen U, Sako E, Laihinen A, Nagren K, Lehikoinen P, Oikonen V, Syvalahti E (1993) Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride. J Cereb Blood Flow Metab 13:310–314

    CAS  PubMed  Google Scholar 

  • Rudow G, O’Brian R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O, Marsh L, Dawson TM, Crain BJ, West MJ, Troncoso JC (2007) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115(4):461–470

    Google Scholar 

  • Schneider JS, Yuwiler A, Markham CH (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res 411:144–150

    CAS  PubMed  Google Scholar 

  • Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S et al (1987) Human brain dopamine receptors in children andaging adults. Synapse 1:399–404

    CAS  PubMed  Google Scholar 

  • Severson JA, Marcusson J, Winblad B, Finch CE (1982) Age correlated loss of dopaminergic binding sites in human basal ganglia. J Neurochem 39:1623–1631

    CAS  PubMed  Google Scholar 

  • Siddiqi Z, Kemper TL, Killiany R (1999) Age-related neuronal loss from the substantia nigra-pars compacta and ventral tegmental area of the rhesus monkey. J Neuropathol Exp Neurol 58:959–971

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473

    CAS  PubMed  Google Scholar 

  • Stanford JA, Vorontsova E, Surgener SP, Gerhardt GA, Fowler SC (2003) Aged Fischer 344 rats exhibit altered orolingual motor function: relationships with nigrostriatal neurochemical measures. Neurobiol Aging 24:259–266

    CAS  PubMed  Google Scholar 

  • Stark A, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318:81–92

    CAS  PubMed  Google Scholar 

  • Sugama S, Yang L, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS, Beal MF, Volpe BT, Joh TH (2003) Age-related microglial activation in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294

    CAS  PubMed  Google Scholar 

  • Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T, Tateno Y (1991) Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology 103:41–45

    CAS  PubMed  Google Scholar 

  • Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318(1):149–161

    PubMed  Google Scholar 

  • Theoret H, Boire D, Herbin M, Ptito M (1999) Stereological evaluation of substantia nigra cell number in normal and hemispherectomized monkeys. Brain Res 835:354–359

    CAS  PubMed  Google Scholar 

  • Thiessen B, Rajput AH, Desai H (1990) Age, environments, and the number of substantia nigra neurons. Adv Neurol 53:201–206

    CAS  PubMed  Google Scholar 

  • Tooyama I, McGeer EG, Kawamata T, Kimura H, McGeer PL (1994) Retention of basic fibroblast growth factor immunoreactivity in dopaminergic neurons of the substantia nigra during normal aging in humans contrasts with loss in Parkinson’s disease. Brain Res 656:165–168

    CAS  PubMed  Google Scholar 

  • Uchida K, Kihara N, Hashimoto K, Nakayama H, Yamaguchi R, Tateyama S (2003) Age-related histological changes in the canine substantia nigra. J Vet Med Sci 65:179–185

    PubMed  Google Scholar 

  • van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Wallace E, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Charney DS, Hoffer PB (1995) Age-related decline in striatal dopamine transporter binding with iodine-123-beta-CITSPECT. J Nucl Med 36:1175–1181

    PubMed  Google Scholar 

  • Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley SJ, Hitzemann R, Smith G, Fields SD, Gur R (1996) Dopamine transporters decrease with age. J Nucl Med 37:554–559

    CAS  PubMed  Google Scholar 

  • Volpe BT, Wildmann J, Altar CA (1998) Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic striatal-pallidal lesions. Neuroscience 83:741–748

    CAS  PubMed  Google Scholar 

  • Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, Huser JM, Snow BJ, Ruth TJ, Calne DB, Stoessl AJ (1998) Age dependent decline of dopamine D1 receptors in human brain: a PET study. Synapse 30:56–61

    CAS  PubMed  Google Scholar 

  • Wilms H, Zecca L, Rosenstiel P, Sivers J, Deuschl G, Lucius R (2007) Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 13(18):1925–1928

    CAS  PubMed  Google Scholar 

  • Wong DF, Broussolle EP, Wand G, Villemagne V, Dannals RF, Links JM, Zacur HA, Harris J, Naidu S, Braestrup C et al (1988) In vivo measurement of dopamine receptors in human brain by positron emission tomography. Age and sex differences. Ann NY Acad Sci 515:203–214

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Vadasz C (2001) The midbrain dopaminergic system: anatomy and genetic variation in dopamine neuron number of inbred mouse strains. Behav Genet 31:47–59

    CAS  PubMed  Google Scholar 

  • Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G, Sivers J, Lucius R (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116(1):47–55

    CAS  PubMed  Google Scholar 

  • Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100:7925–7930

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Eriksen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Eriksen, N., Stark, A.K., Pakkenberg, B. (2009). Age and Parkinson’s Disease-Related Neuronal Death in the Substantia Nigra Pars Compacta. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_16

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics