Skip to main content

Electrophysiological and Neurochemical Characterization of 7-Nitroindazole and Molsidomine Acute and Sub-Chronic Administration Effects in the Dopaminergic Nigrostrial System in Rats

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Abstract

Nitric oxide (NO) plays an important role in the integration of information processed by the basal ganglia nuclei. Accordingly, considerable evidence has emerged indicating a role for NO in pathophysiological conditions such as Parkinson’s disease (PD) and other neurodegenerative disorders. Despite these recent advances, the nitrergic modulation of the dopamine (DA) nigrostriatal system is still unclear. In order to fill this gap, in this study we used in vivo electrophysiology and ex vivo neurochemical analysis to further investigate the effect of NO signaling in rat substantia nigra pars compacta (SNc) and the striatum. Acute and subchronic (4 days) pharmacological manipulation of the NO system using 7-nitroindazole (7-NI, 50 mg kg−1 i.p.) and molsidomine (MOL, 40 mg kg−1 i.p.) treatment caused significant changes in both DA SNc neurons electrophysiological properties and striatal DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. It is worth noting that acute inhibition of NO production decreased DA nigrostriatal neurotransmission while its subchronic inhibition was instead excitatory. Thus, a crucial role for NO in the modulation of nigrostriatal DA function is suggested together with a potential role for inhibitors of NO sythase in the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

7-NI:

7-nitroindazole

ACh:

Acetylcholine

BBB:

Blood brain barrier

DA:

Dopamine

DOPAC:

3,4-dihydroxyphenylacetic acid

l-ARG:

l-Arginine

l-NAME:

N-ω-nitro-l-arginine methyl ester

l-NOARG:

l-nitro-arginine

MAO:

Monoamine oxidase

MOL:

Molsidomine

NNLA:

N-nitro-l-arginine

nNOS:

Neuronal NO synthase

NO:

Nitric oxide

oPFC:

Orbital prefrontal cortex

PD:

Parkinson’s disease

POPAC:

Dihydroxyphenilacetic acid

PPT:

Pedunculopontine tegmental nucleus

SIN-1:

3-morpholinosydnonomine

SNc:

Substantia nigra pars compacta

VTA:

Ventral tegmental area

References

  • Bian K, Murad F (2003) Nitric oxide (NO)-biogeneration, regulation, and relevance to human diseases. Front Biosci 8:264–278

    Article  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2009) Co-administration of nitric oxide (NO) donors prevents haloperidol-induced orofacial dyskinesia, oxidative damage and change in striatal dopamine levels. Pharmacol Biochem Behav 91:423–429

    Article  CAS  PubMed  Google Scholar 

  • Boger RH, Bode-Boger SM, Gerecke U, Frolich JC (1994) Long-term administration of L-arginine, L-NAME and the exogenous NO donor molsidomine modulates urinary nitrate and cGMP excretion in rats. Cardiovasc Res 28:494–499

    Article  CAS  PubMed  Google Scholar 

  • Boireau A, Dubedat P, Bordier F, Imperato A, Moussaoui S (2000) The protective effect of riluzole in the MPTP model of Parkinson’s disease in mice is not due to a decrease in MPP(+) accumulation. Neuropharmacology 39:1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347(6295):768–770

    Article  CAS  PubMed  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185(3):560–571

    CAS  PubMed  Google Scholar 

  • Büyükuysal RL (1997) Effect of nitric oxide donors on endogenous dopamine release from striatal slices. I. Requirement of antioxidants in the medium. Fundam Clin Pharmacol 11:519–527

    Article  PubMed  Google Scholar 

  • Castagnoli K, Palmer S, Anderson A, Bueters T, Castagnoli N Jr (1997) The neuronal nitric oxide synthase inhibitor 7-nitroindazole also inhibits the monoamine oxidase-B-catalyzed oxidation of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Chem Res Toxicol 10:364–368

    Article  CAS  PubMed  Google Scholar 

  • Cox BA, Johnson SW (1998) Nitric oxide facilitates N-methyl- D-aspartate-induced burst firing in dopamine neurons from rat midbrain slices. Neurosci Lett 255(3):131–134

    Article  CAS  PubMed  Google Scholar 

  • Del Bel EA, Guimarães FS (2000) Sub-chronic inhibition of nitricoxide synthesis modifies haloperidol-induced catalepsy and the number of NADPH-diaphorase neurons in mice. Psychopharmacology 147:356–361

    Article  PubMed  Google Scholar 

  • Del Bel EA, da Silva CA, Guimarães FS (1998) Catalepsy induced by nitric oxide synthase inhibitors. Gen Pharmacol 30:245–248

    PubMed  Google Scholar 

  • Del Bel EA, Souza AS, Guimarães FS, da-Silva CA, Nucci-da-Silva LP (2002) Motor effects of acute and chronic inhibition of nitric oxide synthesis in mice. Psychopharmacology 161:32–37

    Article  PubMed  Google Scholar 

  • Del Bel EA, da Silva CA, Guimarães FS, Bermudez-Echeverry M (2004) Catalepsy induced by intra-striatal administration of nitric oxide synthase inhibitors in rats. Eur J Pharmacol 485:175–181

    Article  PubMed  Google Scholar 

  • Del Bel EA, Guimarães FS, Bermudez-Echeverry M, Gomes MZ, Schiaveto-de-souza A, Padovan-Neto FE, Tumas V, Barion- Cavalcanti AP, Lazzarini M, Nucci-da-Silva LP, de Paula-Souza D (2005) Role of nitric oxide on motor behaviour. Cell Mol Neurobiol 25:371–392

    Article  PubMed  Google Scholar 

  • Del Bel E, Bermúdez-Echeverry M, Salum C, Raisman-Vozari R (2007) Nitric oxide system and basal ganglia physiopathology. In: Di Giovanni G (ed) The basal ganglia pathophysiology: recent advances. Transworld Research Network, Kerala, India

    Google Scholar 

  • Del Bel E, Guimarães F, Joca S, Echeverry M, Ferreira F (2008) Tolerance to the cataleptic effect that follows repeated nitric oxide synthase inhibition may be related to functional enzymatic recovery. J Psychopharmacol published on October 6, 2008 as doi:10.1177/0269881108097717

    Google Scholar 

  • Desvignes C, Bert L, Vinet L, Denoroy L, Renaud B, Lambás-Señas L (1999) Evidence that the neuronal nitric oxide synthase inhibitor 7-nitroindazole inhibits monoamine oxidase in the rat: in vivo effects on extracellular striatal dopamine and 3, 4-dihydroxyphenylacetic acid. Neurosci Lett 264(1–3):5–8

    Article  CAS  PubMed  Google Scholar 

  • Di Giovanni G (2007) The Basal Ganglia Pathophysiology: Recent Advances. Transworld Research Network, Kerala, India

    Google Scholar 

  • Di Giovanni G, Ferraro G, Sardo P, Galati S, Esposito E, La Grutta V (2003) Nitric oxide modulates striatal neuronal activity via soluble guanylyl cyclase: an in vivo microiontophoretic study in rats. Synapse 48(2):100–107

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Ferraro G, Sardo P, Di Maio R, Carlatti F, La Grutta V (2006) Microiontophoretic evidence that nitric oxide alters spontaneous activity of the substantia nigra pars reticulata neurons in the rat. Acta Physiol 188(Suppl. 652):P184

    Google Scholar 

  • Di Giovanni G, Shi W-X (2009) Effects of Scopolamine on Dopamine Neurons in the Substantia Nigra: Role of the Pedunculopontine Tegmental Nucleus. Synapse 63(8):673–680

    Article  PubMed  Google Scholar 

  • Di Matteo V, Benigno A, Pierucci M, Giuliano DA, Crescimanno G, Esposito E, Di Giovanni G (2006) 7-nitroindazole protects striatal dopaminergic neurons against MPP+-induced degeneration: an in vivo microdialysis study. Ann NY Acad Sci 1089:462–471

    Article  PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Esposito E, Benigno A, Crescimanno G, Di Giovanni G (2009) Involvement of nitric oxide in 6-OHDA-induced neurodegeneration: An ex vivo study. Ann NY Acad Sci 1155:316–323

    Article  PubMed  Google Scholar 

  • Egberongbe YI, Gentleman SM, Falkai P, Bogerts B, Polak JM, Roberts GW (1994) The distribution of nitric oxide synthase immunoreactivity in the human brain. Neuroscience 59(3):561–578

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Di Matteo V, Di Giovanni G (2007) Death in the substantia nigra: a motor tragedy. Expert Rev Neurother 7:7677–7697

    Article  Google Scholar 

  • Eve DJ, Nisbet AP, Hewson KAE, EL DSE, Lees AJ, Marsden CD, Foster OJ (1998) Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res Mol Brain Res 63(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Feifer A, Carrier S (2008) Pharmacotherapy for erectile dysfunction. Expert Opin Investig Drugs 17:679–690

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6(9):968–973

    Article  CAS  PubMed  Google Scholar 

  • Galati S, D’angelo V, Scarnati E, Stanzione P, Martorana A, Procopio T, Sancesario G, Stefani A (2008) In vivo electrophysiology of dopamine-denervated striatum: focus on the nitric oxide/cGMP signaling pathway. Synapse 62(6):409–420

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    Article  CAS  PubMed  Google Scholar 

  • Gomes MZ, Raisman-Vozari R, Del Bel EA (2008) A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Res 1203:160–169

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30(5):220–227

    Article  CAS  PubMed  Google Scholar 

  • Guevara-Guzman R, Emson PC, Kendrick KM (1994) Modulation of in vivo striatal transmitter release by nitric oxide and cyclic-GMP. J Neurochem 62:807–810

    Article  CAS  PubMed  Google Scholar 

  • Koylu EO, Kanit L, Taskiran D, Dagci T, Balkan B, Pogun S (2005) Effects of nitric oxide synthase inhibition on spatial discrimination learning and central DA2 and mACh receptors. Pharmacol Biochem Behav 81:32–40

    Article  CAS  PubMed  Google Scholar 

  • Krzaścik P, Kostowski W (1997) Nitric oxide donors antagonize N-nitro-L-arginine and haloperidol catalepsy: potential implication for the treatment of Parkinsonism? Pol J Pharmacol 49(4):263–266

    PubMed  Google Scholar 

  • Leontovich TA, Mukhina YK, Fedorov AA (2004) Neurons of the basal ganglia of the human brain (striatum and basolateral amygdala) expressing the enzyme NADPH-d. Neurosci Behav Physiol 34(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Buffington JA, Tjalkens RB (2005) NF-kappaB-dependent production of nitric oxide by astrocytes mediates apoptosis in differentiated PC12 neurons following exposure to manganese and cytokines. Brain Res Mol Brain Res 141(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Low SY (2005) Application of pharmaceuticals to nitric oxide. Mol Aspects Med 26(1–2):97–138

    Article  CAS  PubMed  Google Scholar 

  • Maccario M, Oleandri SE, Procopio M, Grottoli S, Avogadri E, Camanni F (1997) Comparisons among the effects of arginine, a nitric oxide precursor, isosorbide dinitrate and molsidomine, two nitric oxide donors on hormonal secretions and blood pressure in man. J Endocrinol Invest 20:488–492

    CAS  PubMed  Google Scholar 

  • Marras R, Martins AP, Del Bel EA, Guimarães FS (1995) L-NOARG, an inhibitor of nitric oxide synthase induces catalepsy in mice. NeuroReport 7:158–160

    CAS  PubMed  Google Scholar 

  • Moore PK, Babbedge RC, Wallace P, Gaffen ZA, Hart SL (1993) 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol 108:296–297

    CAS  PubMed  Google Scholar 

  • Nisbet AP, Foster OJ, Kingsbury A, Lees AJ, Marsden CD (1994) Nitric oxide synthase mRNA expression in human subthalamic nucleus, striatum and globus pallidus: implications for basal ganglia function. Brain Res Mol Brain Res 22(1–4):329–332

    Article  CAS  PubMed  Google Scholar 

  • Nitz R, Fiedler V (1987) Molsidomine: alternative approaches to treat myocardial ischemia. Pharmacotherapy 7:28–37

    CAS  PubMed  Google Scholar 

  • Ondracek JM, Dec A, Hoque KE, Lim SA, Rasouli G, Indorkar RP, Linardakis J, Klika B, Mukherji SJ, Burnazi M, Threlfell S, Sammut S, West AR (2008) Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo. Eur J Neurosci 27(7):1739–1754

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, New York

    Google Scholar 

  • Rigamonti AE, Cella SG, Cavallera GM, Deghenghi R, Locatelli V, Pitsikas N, Muller EE (2001) Contrasting effects of nitric oxide on food intake and GH secretion stimulated by a GH-releasing peptide. Eur J Endocrinol 144:155–162

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz B, Winkelmann BR, Parnham MJ (1996) Clinical pharmacokinetics of molsidomine. Clin Pharmacokinet 30:372–384

    Article  CAS  PubMed  Google Scholar 

  • Sammut S, Dec A, Mitchell D, Linardakis J, Ortiguela M, West AR (2006) Phasic dopaminergic transmission increases NO efflux in the rat dorsal striatum via a neuronal NOS and a dopamine D(1/5) receptor-dependent mechanism. Neuropsychopharmacology 31(3): 493–505

    Article  CAS  PubMed  Google Scholar 

  • Sammut S, Bray KE, West AR (2007) Dopamine D2 receptor-dependent modulation of striatal NO synthase activity. Psychopharmacology (Berl) 191(3):793–803

    Article  CAS  Google Scholar 

  • Sardo P, Ferraro G, Di Giovanni G, Galati S, La Grutta V (2002) Inhibition of nitric oxide synthase influences the activity of striatal neurons in the rat. Neurosci Lett 325(3):179–182

    Article  CAS  PubMed  Google Scholar 

  • Sardo P, Ferraro G, Di Giovanni G, La Grutta V (2003) Nitric oxide-induced inhibition on striatal cells and excitation on globus pallidus neurons: a microiontophoretic study in the rat. Neurosci Lett 343(2):101–104

    Article  CAS  PubMed  Google Scholar 

  • Sardo P, Carletti F, D’Agostino S, Rizzo V, Ferraro G (2006) Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat. Eur J Neurosci 24(7): 1995–2002

    Article  PubMed  Google Scholar 

  • Schilström B, Mameli-Engvall M, Rawal N, Grillner P, Jardemark K, Svensson TH (2004) Nitric oxide is involved in nicotine-induced burst firing of rat ventral tegmental area dopamine neurons. Neuroscience 125:957–964

    Article  PubMed  Google Scholar 

  • Shi WX, Smith PL, Pun CL, Millet B, Bunney BS (1997) D1–D2 interaction in feedback control of midbrain dopamine neurons. J Neurosci 17(20):7988–7994

    CAS  PubMed  Google Scholar 

  • Shim SS, Bunney BS, Shi WX (1996) Effects of lesions in the medial prefrontal cortex on the activity of midbrain dopamine neurons. Neuropsychopharmacology 15(5):437–441

    Article  CAS  PubMed  Google Scholar 

  • Silva MT, Rose S, Hindmarsh JG, Aislaitner G, Gorrod JW, Moore PK, Jenner P, Marsden CD (1995) Increased striatal dopamine efflux in vivo following inhibition of cerebral nitric oxide synthase by the novel monosodium salt of 7-nitro indazole. Br J Pharmacol 114(2):257–258

    CAS  PubMed  Google Scholar 

  • Silva MT, Rose S, Hindmarsh JG, Jenner P (2003) Inhibition of neuronal nitric oxide synthase increases dopamine efflux from rat striatum. J Neural Transm 110(4):353–362

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167

    Article  CAS  PubMed  Google Scholar 

  • Southan GJ, Szabo C (1996) Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol 51:383–394

    Article  CAS  PubMed  Google Scholar 

  • Sugaya K, McKinney M (1994) Nitric oxide synthase gene expression in cholinergic neurons in the rat brain examined by combined immunocytochemistry andin situ hybridization histochemistry. Mol Brain Res 23:111–125

    Article  CAS  PubMed  Google Scholar 

  • Thatcher GR, Bennett BM, Reynolds JN (2006) NO chimeras as therapeutic agents in Alzheimer’s disease. Curr Alzheimer Res 3:237–245

    Article  CAS  PubMed  Google Scholar 

  • Thomas B, Saravanan KS, Mohanakumar KP (2008) In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem Int 52:990–1001

    Article  CAS  PubMed  Google Scholar 

  • Trabace L, Kendrick KM (2000) Nitric oxide can differentially modulate striatal neurotransmitter concentrations via soluble guanylate cyclase and peroxynitrite formation. J Neurochem 75(4):1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46(4):755–784

    Article  CAS  PubMed  Google Scholar 

  • West AR, Grace AA (2000) Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo. J Neurophysiol 83(4):1796–1808

    CAS  PubMed  Google Scholar 

  • West AR, Galloway MP, Grace AA (2002) Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse 44(4):227–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Ateneo di Palermo research funding, project ORPA068JJ5, coordinator G. D.; G. O. was supported by an Italian Ministry of the University and Scientific Research fellowship (Tutor: G. D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Di Giovanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Di Matteo, V. et al. (2009). Electrophysiological and Neurochemical Characterization of 7-Nitroindazole and Molsidomine Acute and Sub-Chronic Administration Effects in the Dopaminergic Nigrostrial System in Rats. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics