Skip to main content

Motor Neuropathy in Diabetes

  • Chapter
  • First Online:
Diabetic Neuropathy

Part of the book series: Contemporary Diabetes ((CDI))

  • 789 Accesses

Abstract

Motor nerves are impaired in distal symmetric polyneuropathy (DSPN) to the same degree as sensory nerves based on nerve conduction studies. However, motor neuropathy becomes clinically apparent only in later stages of DSPN. Motor neuropathy is characterized by muscle weakness and muscular atrophy which may lead to postural instability, impaired ambulation, and increased morbidity. Motor involvement may go unnoticed, as early motor symptoms and deficits are not included in the standardized assessment for DSPN. Muscle weakness follows the same topographical distribution as sensory symptoms and deficits seen in DSPN with a symmetrical and distal distribution presenting as weakness at the toes followed by weakness at the ankle and knee. The diagnosis is based on a combination of clinical tests and nerve conduction studies. Several other methods can be applied to assess muscle size and quality, including imaging techniques and muscle biopsies; however, these methods are mainly used for research purposes. Currently, there are no specific treatments for motor neuropathy, but recent evidence indicates strength benefits from physical training of motor dysfunction in individuals with DSPN. In this chapter, we will be discussing all aspects of motor neuropathy, including clinical presentation, pathophysiology, muscle strength, diagnostic tools, functional consequences of motor impairment, and the effects of exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54. [cited 2019 May 23]. http://www.ncbi.nlm.nih.gov/pubmed/27999003.

    CAS  PubMed  Google Scholar 

  2. Dyck PJ, Carter RE, Litchy WJ. Modeling nerve conduction criteria for diagnosis of diabetic polyneuropathy. Muscle Nerve. 2011;44(3):340–5. [cited 2019 May 23]. http://www.ncbi.nlm.nih.gov/pubmed/21996793.

    PubMed  PubMed Central  Google Scholar 

  3. Dyck PJB, Overland CJ, Low PA, Litchy WJ, Davies JL, Dyck PJB, et al. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve. 2010;42(2):157–64. [cited 2019 Dec 10]. http://doi.wiley.com/10.1002/mus.21661.

    PubMed  Google Scholar 

  4. Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43(4):817–24. http://www.ncbi.nlm.nih.gov/pubmed/8469345.

    CAS  PubMed  Google Scholar 

  5. Suda EY, Matias AB, Bus SA, Sacco ICN, et al. Impact of diabetic neuropathy severity on foot clearance complexity and variability during walking. Gait Posture. 2019;74:194–9. https://doi.org/10.1016/j.gaitpost.2019.09.014.

    Article  PubMed  Google Scholar 

  6. Martinelli AR, Mantovani AM, Nozabieli AJL, Ferreira DMA, Barela JA, de Camargo MR, et al. Muscle strength and ankle mobility for the gait parameters in diabetic neuropathies. Foot (Edinb). 2013;23(1):17–21.

    PubMed  Google Scholar 

  7. Richardson JK, Demott T, Allet L, Kim H, Ashton-Miller JA. Hip strength: ankle proprioceptive threshold ratio predicts falls and injury in diabetic neuropathy. Muscle Nerve. 2014;50(3):437–42.

    PubMed  PubMed Central  Google Scholar 

  8. Allet L, Kim H, Ashton-Miller J, De Mott T, Richardson JK. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy. J Diabetes Complications. 2014;28(1 CC-Injuries):79–84. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01038023/full.

  9. Cavanagh PR, Derr JA, Ulbrecht JS, Maser RE, Orchard TJ. Problems with gait and posture in neuropathic patients with insulin-dependent diabetes mellitus. Diabet Med. 1992;9(5):469–74.

    CAS  PubMed  Google Scholar 

  10. Onodera AN, Gomes AA, Pripas D, Mezzarane RA, Sacco ICN. Lower limb electromygraphy and kinematics of neuropathic diabetic patients during real-life activities: stair negotiation. Muscle Nerve. 2011;44(2):269–77. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L362173554.

    PubMed  Google Scholar 

  11. Andersen H, Mogensen PM. Disordered mobility of large joints in association with neuropathy in patients with long-standing insulin-dependent diabetes mellitus. Diabet Med. 1997;14(3):221–7.

    CAS  PubMed  Google Scholar 

  12. Praet SFE, Jonkers RAM, Schep G, Stehouwer CDA, Kuipers H, Keizer HA, et al. Long-standing, insulin-treated type 2 diabetes patients with complications respond well to short-term resistance and interval exercise training. Eur J Endocrinol. 2008;158(2):163–72. [cited 2019 Jul 9]. http://www.ncbi.nlm.nih.gov/pubmed/18230822.

    CAS  PubMed  Google Scholar 

  13. Balducci S, Zanuso S, Massarini M, Corigliano G, Nicolucci A, Missori S, et al. The Italian Diabetes and Exercise Study (IDES): design and methods for a prospective Italian multicentre trial of intensive lifestyle intervention in people with type 2 diabetes and the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2008;18(9):585–95. [cited 2019 Jul 17]. http://www.ncbi.nlm.nih.gov/pubmed/18061415.

    PubMed  Google Scholar 

  14. Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diabetes Metab Res Rev. 2016;32(1):40–50. [cited 2019 Jul 9] http://doi.wiley.com/10.1002/dmrr.2658.

    PubMed  Google Scholar 

  15. Monaco CMF, Perry CGR, Hawke TJ. Diabetic myopathy. Curr Opin Neurol. 2017;30(5):545–52. [cited 2019 Aug 14]. http://insights.ovid.com/crossref?an=00019052-201710000-00016.

    CAS  PubMed  Google Scholar 

  16. Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia. 1997;40(9):1062–9.

    CAS  PubMed  Google Scholar 

  17. Andersen H. Muscular endurance in long-term IDDM patients. Diabetes Care. 1998;21(4):604–9. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L28172942.

    CAS  PubMed  Google Scholar 

  18. Andersen H, Jacobsen J, Andreassen CS. A progressive late complication in diabetic distal symmetric polyneuropathy. Muscle Weakness. 2006;21(2):262–8.

    Google Scholar 

  19. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8.

    CAS  PubMed  Google Scholar 

  20. Andersen H, Stålberg E, Falck B. F-wave latency, the most sensitive nerve conduction parameter in patients with diabetes mellitus. Muscle Nerve. 1997;20(10):1296–302.

    CAS  PubMed  Google Scholar 

  21. Andersen H, Stålberg E, Gjerstad MD, Jakobsen J. Association of muscle strength and electrophysiological measures of reinnervation in diabetic neuropathy. Muscle Nerve. 1998;21(12):1647–54. [cited 2019 Dec 7]. http://www.ncbi.nlm.nih.gov/pubmed/9843064.

    CAS  PubMed  Google Scholar 

  22. Andreassen CS, Jensen JM, Jakobsen J, Ulhøj BP, Andersen H. Striated muscle fiber size, composition, and capillary density in diabetes in relation to neuropathy and muscle strength. J Diabetes. 2014;6(5):462–71.

    PubMed  Google Scholar 

  23. Meijer JWK, Bosma E, Lefrandt JD, Links TP, Smith AJ, Steward R. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: the diabetic neuropathy symptom score. Diabet Med. 2002;19:962–5.

    CAS  PubMed  Google Scholar 

  24. Andreassen CS, Jakobsen J, Flyvbjerg A, Andersen H. Expression of neurotrophic factors in diabetic muscle-relation to neuropathy and muscle strength. Brain. 2009;132(10):2724–33.

    CAS  PubMed  Google Scholar 

  25. Bril V, Perkins BA. Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy. Diabetes Care. 2002;25(11):2048–52. [cited 2019 May 24]. http://www.ncbi.nlm.nih.gov/pubmed/12401755.

    PubMed  Google Scholar 

  26. Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–93. [cited 2019 May 23]. http://www.ncbi.nlm.nih.gov/pubmed/20876709.

    PubMed  PubMed Central  Google Scholar 

  27. Callaghan BC, Xia R, Reynolds E, Banerjee M, Rothberg AE, Burant CF, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016;73(12):1468. [cited 2020 May 10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217829/#R30.

    PubMed  PubMed Central  Google Scholar 

  28. Dyck PJ, Albers JW, Andersen H, Arezzo JC, Biessels G-J, Bril V, et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev. 2011;27(7):620–8.

    PubMed  Google Scholar 

  29. Gregersen G. Latency time, maximal amplitude and electromyography in diabetic patients. Acta Med Scand. 1968;183(1–2):55–60.

    CAS  PubMed  Google Scholar 

  30. Tankisi H, Pugdahl KBS, Andersen HF-FA, Tankisi H, Pugdahl K, Beniczky S, Andersen H, et al. Evidence-based recommendations for examination and diagnostic strategies of polyneuropathy electrodiagnosis. Clin Neurophysiol Pract. 2019;4:214–22. [cited 2019 Dec 14]. https://www.sciencedirect.com/science/article/pii/S2467981X19300381.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Weisman A, Bril V, Ngo M, Lovblom LE, Halpern EM, Orszag A, et al. Identification and prediction of diabetic sensorimotor polyneuropathy using individual and simple combinations of nerve conduction study parameters. PLoS One. 2013;8(3):e58783.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Albers JW, Brown MB, Sima AA, Greene DA. Nerve conduction measures in mild diabetic neuropathy in the Early Diabetes Intervention Trial: the effects of age, sex, type of diabetes, disease duration, and anthropometric factors. Tolrestat Study Group for the Early Diabetes Intervention Trial. Neurology. 1996;46(1):85–91.

    CAS  PubMed  Google Scholar 

  33. Dyck PJ, Karnes JL, Daube J, O’Brien P, Service FJ. Clinical and neuropathological criteria for the diagnosis and staging of diabetic polyneuropathy. Brain. 1985;108(4):861–80. https://doi.org/10.1093/brain/108.4.861.

    Article  PubMed  Google Scholar 

  34. Kohara N, Kimura J, Kaji R, Goto Y, Ishii J, Takiguchi M, et al. F-wave latency serves as the most reproducible measure in nerve conduction studies of diabetic polyneuropathy: multicentre analysis in healthy subjects and patients with diabetic polyneuropathy. Diabetologia. 2000;43(7):915–21.

    CAS  PubMed  Google Scholar 

  35. Pan H, Lin J, Chen N, Jian F, Zhang Z, Ding Z, et al. Normative data of F-wave measures in China. Clin Neurophysiol. 2013;124(1):183–9.

    PubMed  Google Scholar 

  36. Hendriksen PH, Oey PL, Wieneke GH, Bravenboer B, Banga JD. Subclinical diabetic neuropathy: similarities between electrophysiological results of patients with Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(7):690–5. https://doi.org/10.1007/BF00400264.

    Article  CAS  PubMed  Google Scholar 

  37. Balducci S, Sacchetti M, Orlando G, Salvi L, Pugliese L, Salerno G, et al. Correlates of muscle strength in diabetes: the study on the assessment of determinants of muscle and bone strength abnormalities in diabetes (SAMBA). Nutr Metab Cardiovasc Dis. 2014;24(1):18–26.

    CAS  PubMed  Google Scholar 

  38. Kamiya H, Murakawa Y, Zhang W, Sima AAF. Unmyelinated fiber sensory neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev. 2005;21(5):448–58.

    CAS  PubMed  Google Scholar 

  39. Singleton JR, Bixby B, Russell JW, Feldman EL, Peltier A, Goldstein J, et al. The Utah Early Neuropathy Scale: a sensitive clinical scale for early sensory predominant neuropathy. J Peripher Nerv Syst. 2008;13(3):218–27. [cited 2019 May 24]. http://www.ncbi.nlm.nih.gov/pubmed/18844788.

    PubMed  Google Scholar 

  40. Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131(7):1912. [cited 2020 May 14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442424/.

    PubMed  PubMed Central  Google Scholar 

  41. Sivaskandarajah GA, Halpern EM, Lovblom LE, Weisman A, Orlov S, Bril V, et al. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care. 2013;36(9):2748–55.

    PubMed  PubMed Central  Google Scholar 

  42. Andersson C, Guttorp P, Särkkä A. Discovering early diabetic neuropathy from epidermal nerve fiber patterns. Stat Med. 2016;35(24):4427–42.

    PubMed  Google Scholar 

  43. Braune HJ. Early detection of diabetic neuropathy: a neurophysiological study on 100 patients. Electromyogr Clin Neurophysiol. 1997;37(7):399–407.

    CAS  PubMed  Google Scholar 

  44. Jacobsen AB, Bostock H, Tankisi H. CMAP scan MUNE (MScan)—a novel motor unit number estimation (MUNE) method. J Vis Exp. 2018;(136).

    Google Scholar 

  45. Kristensen AG, Khan KS, Bostock H, Khan BS, Gylfadottir S, Andersen H, et al. MScanFit motor unit number estimation and muscle velocity recovery cycle recordings in diabetic polyneuropathy. Clin Neurophysiol Pract. 2020;131(11):2591–9.

    CAS  Google Scholar 

  46. Lord SR, Caplan GA, Colagiuri R, Colagiuri S, Ward JA. Sensori-motor function in older persons with diabetes. Diabet Med. 1993;10(7):614–8.

    CAS  PubMed  Google Scholar 

  47. Andersen H, Poulsen PL, Mogensen CE, Jakobsen J. Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications. Diabetes. 1996;45(4):440–5. [cited 2019 Dec 13]. http://www.ncbi.nlm.nih.gov/pubmed/8603765.

    CAS  PubMed  Google Scholar 

  48. Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability. Acta Diabetol. 2017;54(6):543–50.

    PubMed  Google Scholar 

  49. Nomura T, Ishiguro T, Ohira M, Ikeda Y. Diabetic polyneuropathy is a risk factor for decline of lower extremity strength in patients with type 2 diabetes. J Diabetes Investig. 2018;9(1):186–92.

    CAS  PubMed  Google Scholar 

  50. Bursac SN, Jandric S, Talic G. Influence of diabetic distal symmetric polyneuropathy on the performance of the musculoskeletal system of lower leg and foot. Med Arch. 2019;73(4):262–7.

    PubMed  PubMed Central  Google Scholar 

  51. IJzerman TH, Schaper NC, Melai T, Meijer K, Willems PJB, Savelberg HHCM. Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Res Clin Pract. 2012;95(3):345–51.

    PubMed  Google Scholar 

  52. Allen MD, Major B, Kimpinski K, Doherty TJ, Rice CL. Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy. J Appl Physiol. 2014;116(5):545–52.

    CAS  PubMed  Google Scholar 

  53. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057–72.

    PubMed  PubMed Central  Google Scholar 

  54. Tuttle LJ, Sinacore DR, Cade WT, Mueller MJ. Lower physical activity is associated with higher intermuscular adipose tissue in people with type 2 diabetes and peripheral neuropathy. Phys Ther. 2011;91(6):923–30. [cited 2019 Jul 9]. http://www.ncbi.nlm.nih.gov/pubmed/21474636.

    PubMed  PubMed Central  Google Scholar 

  55. Bittel AJ, Bittel DC, Tuttle LJ, Strube MJ, Mueller MJ, Cade WT, et al. Explanators of Sarcopenia in individuals with diabesity: a cross-sectional analysis. J Geriatr Phys Ther. 2017;40(2):86–94.

    PubMed  PubMed Central  Google Scholar 

  56. Gundmi S, Maiya AG, Bhat AK, Ravishankar N, Hande MH, Rajagopal KV. Hand dysfunction in type 2 diabetes mellitus: systematic review with meta-analysis. Ann Phys Rehabil Med. 2018;61(2):99–104.

    PubMed  Google Scholar 

  57. Gutefeldt K, Lundstedt S, Thyberg ISMM, Bachrach-Lindström M, Arnqvist HJ, Spångeus A. Clinical examination and self-reported upper extremity impairments in patients with long-standing type 1 diabetes mellitus. J Diabetes Res. 2020;2020:4172635.

    PubMed  PubMed Central  Google Scholar 

  58. Lima KCA, Borges LS, Hatanaka E, Rolim LC, de Freitas PB. Grip force control and hand dexterity are impaired in individuals with diabetic peripheral neuropathy. Neurosci Lett. 2017;659:54–9.

    CAS  PubMed  Google Scholar 

  59. Kabitz H-J, Sonntag F, Walker D, Schwoerer A, Walterspacher S, Kaufmann S, et al. Diabetic polyneuropathy is associated with respiratory muscle impairment in type 2 diabetes. Diabetologia. 2008;51(1):191–7.

    PubMed  Google Scholar 

  60. Van Eetvelde BLM, Cambier D, Vanden Wyngaert K, Celie B, Calders P. The influence of clinically diagnosed neuropathy on respiratory muscle strength in type 2 diabetes mellitus. J Diabetes Res. 2018;2018:8065938.

    PubMed  PubMed Central  Google Scholar 

  61. Venkataraman K, Pun V, Mohamed AZ, Luo M, Wong C, Zong F, et al. Altered motor and motor perceptual cognitive imagery task-related activation in diabetic peripheral neuropathy: insights from functional MRI. Diabetes Care. 2019;42(10):2004–7.

    PubMed  Google Scholar 

  62. Kell RT, Bell G, Quinney A. Musculoskeletal fitness, health outcomes and quality of life. Sport Med. 2001;31(12):863–73. [cited 2019 Dec 19]. http://www.ncbi.nlm.nih.gov/pubmed/11665913.

    CAS  Google Scholar 

  63. Wakeling JM, Lee SSM, Arnold AS, de Boef Miara M, Biewener AA. A muscle’s force depends on the recruitment patterns of its fibers. Ann Biomed Eng. 2012;40(8):1708–20. [cited 2019 Dec 13]. http://www.ncbi.nlm.nih.gov/pubmed/22350666.

    PubMed  PubMed Central  Google Scholar 

  64. Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53(6):1543–8. [cited 2019 Jul 23]. http://diabetes.diabetesjournals.org/content/53/6/1543.abstract.

    CAS  PubMed  Google Scholar 

  65. Henderson AD, Johnson AW, Rasmussen LG, Peine WP, Symons SH, Scoresby KA, et al. Early-stage diabetic neuropathy reduces foot strength and intrinsic but not extrinsic foot muscle size. J Diabetes Res. 2020;2020:9536362.

    PubMed  PubMed Central  Google Scholar 

  66. Severinsen K. Atrophy of foot muscles in diabetic. Diabetes Care. 2007;30(12):3053–7.

    PubMed  Google Scholar 

  67. Severinsen K, Andersen H. Evaluation of atrophy of foot muscles in diabetic neuropathy—a comparative study of nerve conduction studies and ultrasonography. Clin Neurophysiol. 2007;118(10):2172–5.

    PubMed  Google Scholar 

  68. Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles-a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52(6):1182–91.

    CAS  PubMed  Google Scholar 

  69. Greenman RL, Panasyuk S, Wang X, Lyons TE, Dinh T, Longoria L, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366(9498):1711–7.

    CAS  PubMed  Google Scholar 

  70. Almurdhi MM, Reeves ND, Bowling FL, Boulton AJM, Jeziorska M, Malik RA. Reduced lower-limb muscle strength and volume in patients with type 2 diabetes in relation to neuropathy, intramuscular fat, and vitamin D levels. Diabetes Care. 2016;39(3):441–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stouge A, Khan KS, Kristensen AG, Tankisi H, Schlaffke L, Froeling M, et al. MRI of skeletal muscles in participants with type 2 diabetes with or without diabetic polyneuropathy. Radiology. 2020;297(3):608–19.

    PubMed  Google Scholar 

  72. Kim K-H, Yoo J-Y, You B-C. Ultrasonographic evaluation of sural nerve for nerve conduction study. Ann Rehabil Med. 2014;38(1):46–51.

    PubMed  PubMed Central  Google Scholar 

  73. Pham M, Oikonomou D, Bäumer P, Bierhaus A, Heiland S, Humpert PM, et al. Proximal neuropathic lesions in distal symmetric diabetic polyneuropathy: findings of high-resolution magnetic resonance neurography. Diabetes Care. 2011;34(3):721–3.

    PubMed  PubMed Central  Google Scholar 

  74. Vaeggemose M, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, et al. Magnetic resonance neurography visualizes abnormalities in sciatic and tibial nerves in patients with type 1 diabetes and neuropathy. Diabetes. 2017;66(7):1779–88.

    CAS  PubMed  Google Scholar 

  75. Hewston P, Deshpande N. Falls and balance impairments in older adults with type 2 diabetes: thinking beyond diabetic peripheral neuropathy. Can J Diabetes. 2016;40(1):6–9. [cited 2017 Jan 9]. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L607755496.

    PubMed  Google Scholar 

  76. Brown SJ, Handsaker JC, Bowling FL, Boulton AJM, Reeves ND. Diabetic peripheral neuropathy compromises balance during daily activities. Diabetes Care. 2015;38(6):1116–22. [cited 2019 May 23]. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L609629141.

    PubMed  Google Scholar 

  77. Vaz MM, Costa GC, Reis JG, Junior WM, Albuquerque de Paula FJ, Abreu DC. Postural control and functional strength in patients with type 2 diabetes mellitus with and without peripheral neuropathy. Arch Phys Med Rehabil. 2013;94(12):2465–70.

    PubMed  Google Scholar 

  78. Richardson JK, Eckner JT, Allet L, Kim H, Ashton-Miller JA. Complex and simple clinical reaction times are associated with gait, balance, and major fall injury in older subjects with diabetic peripheral neuropathy. Am J Phys Med Rehabil. 2017;96(1):8–16. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617662636.

    PubMed  PubMed Central  Google Scholar 

  79. Khan KS, Andersen H. The impact of diabetic neuropathy on activities of daily living, postural balance and risk of falls—a systematic review. J Diabetes Sci Technol. 2022;16(2):289–94.

    PubMed  Google Scholar 

  80. Simoneau GG, Ulbrecht JS, Derr JA, Becker MB, Cavanagh PR. Postural instability in patients with diabetic sensory neuropathy. Diabetes Care. 1994;17(12):1411–21. [cited 2019 Jul 23]. https://doi.org/10.2337/diacare.17.12.1411.

    Article  CAS  PubMed  Google Scholar 

  81. Abe T, De Hoyos DV, Pollock ML, Garzarella L. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol Occup Physiol. 2000;81(3):0174. [cited 2019 Dec 23]. http://www.ncbi.nlm.nih.gov/pubmed/10638374.

    CAS  Google Scholar 

  82. Menz HB, Lord SR, St George R, Fitzpatrick RC, George RS, Fitzpatrick RC, et al. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch Phys Med Rehabil. 2004;85(2):245–52. [cited 2019 May 23]. http://www.ncbi.nlm.nih.gov/pubmed/14966709.

    PubMed  Google Scholar 

  83. Almurdhi MM, Brown SJ, Bowling FL, Boulton AJM, Jeziorska M, Malik RA, et al. Altered walking strategy and increased unsteadiness in participants with impaired glucose tolerance and Type 2 diabetes relates to small-fibre neuropathy but not vitamin D deficiency. Diabet Med. 2017;34(6):839–45.

    CAS  PubMed  Google Scholar 

  84. Handsaker JC, Brown SJ, Bowling FL, Cooper G, Maganaris CN, Boulton AJM, et al. Contributory factors to unsteadiness during walking up and down stairs in patients with diabetic peripheral neuropathy. Diabetes Care. 2014;37(11):3047–53. [cited 2019 Aug 4]. https://doi.org/10.2337/dc14-0955.

    Article  PubMed  Google Scholar 

  85. Khan KS, Pop-Busui R, Devantier L, Kristensen AG, Tankisi H, Dalgas U, et al. Falls in individuals with type 2 diabetes; a cross-sectional study on the impact of motor dysfunction, postural instability and diabetic polyneuropathy. Diabet Med. 2020;38(9):e14470.

    PubMed  Google Scholar 

  86. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes. JAMA. 2010;304(20):2253. [cited 2019 Dec 20]. http://www.ncbi.nlm.nih.gov/pubmed/21098771.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care. 2002;25(12):2335–41. [cited 2019 Aug 17]. http://www.ncbi.nlm.nih.gov/pubmed/12453982.

    PubMed  Google Scholar 

  88. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147. [cited 2019 Aug 23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992225/.

    PubMed  PubMed Central  Google Scholar 

  89. Dagogo-Jack S, Egbuonu N, Edeoga C. Principles and practice of nonpharmacological interventions to reduce cardiometabolic risk. Med Princ Pract. 2010;19(3):167–75. [cited 2019 Dec 10]. http://www.ncbi.nlm.nih.gov/pubmed/20357497.

    PubMed  PubMed Central  Google Scholar 

  90. LeMaster JW, Mueller MJ, Reiber GE, Mehr DR, Madsen RW, Conn VS. Effect of weight-bearing activity on foot ulcer incidence in people with diabetic peripheral neuropathy: feet first randomized controlled trial. Phys Ther. 2008;88(11):1385–98. [cited 2019 Aug 18]. http://www.ncbi.nlm.nih.gov/pubmed/18801859.

    PubMed  Google Scholar 

  91. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C. Physical activity/exercise and type 2 diabetes. Diabetes Spectr. 2005;18(1):2518–39. [cited 2019 Aug 31]. http://www.ncbi.nlm.nih.gov/pubmed/15451933.

    Google Scholar 

  92. Balducci S, Iacobellis G, Parisi L, Di Biase N, Calandriello E, Leonetti F, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complications. 2006;20(4):216–23. [cited 2019 Jul 17]. https://www.sciencedirect.com/science/article/abs/pii/S1056872705000905?via%3Dihub.

    PubMed  Google Scholar 

  93. Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29(6):1294–9.

    PubMed  Google Scholar 

  94. Kluding PM, Pasnoor M, Singh R, Jernigan S, Farmer K, Rucker J, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications. 2012;26(5):424–9. [cited 2019 Jul 9]. http://www.ncbi.nlm.nih.gov/pubmed/22717465.

    PubMed  PubMed Central  Google Scholar 

  95. Singleton JR, Marcus RL, Jackson JE, Lessard M, Graham TE, Smith AG. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann Clin Transl Neurol. 2014;1(10):844–9. [cited 2019 Jul 17]. http://www.ncbi.nlm.nih.gov/pubmed/25493275.

    PubMed  PubMed Central  Google Scholar 

  96. Khan KS, Overgaard K, Tankisi H, Karlsson P, Devantier L, Gregersen S, et al. Effects of progressive resistance training in individuals with type 2 diabetic polyneuropathy: a randomised assessor-blinded controlled trial. Diabetologia. 2022;65(4):620–31.

    CAS  PubMed  Google Scholar 

  97. Allet L, Armand S, de Bie RA, Golay A, Monnin D, Aminian K, et al. The gait and balance of patients with diabetes can be improved: a randomised controlled trial. Diabetologia. 2010;53(3):458–66. [cited 2019 Jul 6]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815802/.

    CAS  PubMed  Google Scholar 

  98. Robin LK, Joseph WL, Richard WM. Fall and balance outcomes after an intervention to promote leg strength, balance, and walking in people with diabetic peripheral neuropathy: “Feet First” Randomized Controlled Trial. https://doi.org/10.2522/ptj.20090362.

    CAS  PubMed  Google Scholar 

  99. Mueller MJ, Tuttle LJ, Lemaster JW, Strube MJ, McGill JB, Hastings MK, et al. Weight-bearing versus nonweight-bearing exercise for persons with diabetes and peripheral neuropathy: a randomized controlled trial. Arch Phys Med Rehabil. 2013;94(5):829–38. [cited 2019 Jul 9]. https://doi.org/10.1016/j.apmr.2012.12.015.

    Article  PubMed  Google Scholar 

  100. Mcleod JC, Stokes T, Phillips SM. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front Physiol. 2019;10:645.

    PubMed  PubMed Central  Google Scholar 

  101. Cadore EL, Rodríguez-Mañas L, Sinclair A, Izquierdo M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation Res. 2013;16(2):105–14.

    PubMed  PubMed Central  Google Scholar 

  102. Morrison S, Colberg SR, Parson HK, Vinik AI. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. J Diabetes Complications. 2014;28(5):715–22. [cited 2019 Jul 9]. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L53187427.

    PubMed  Google Scholar 

  103. Taveggia G, Villafañe JH, Vavassori F, Lecchi C, Borboni A, Negrini S, et al. Multimodal treatment of distal sensorimotor polyneuropathy in diabetic patients: a randomized clinical trial. J Manipulative Physiol Ther. 2014;37(4):242–52. [cited 2016 Oct 21]. http://www.ncbi.nlm.nih.gov/pubmed/24656867.

    PubMed  Google Scholar 

  104. Richardson JK, Sandman D, Vela S. A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Arch Phys Med Rehabil. 2001;82(2):205–9. http://www.ncbi.nlm.nih.gov/pubmed/11239311.

    CAS  PubMed  Google Scholar 

  105. Akbari M, Jafari H, Moshashaee A, Forugh B. Do diabetic neuropathy patients benefit from balance training? J Rehabil Res Dev. 2012;49(2):333–8. [cited 2019 Jul 9]. http://www.ncbi.nlm.nih.gov/pubmed/22773533.

    PubMed  Google Scholar 

  106. Dixit S, Maiya A, Shastry BA, Guddattu V. Analysis of postural control during quiet standing in a population with diabetic peripheral neuropathy undergoing moderate intensity aerobic exercise training: a single blind, randomized controlled trial. Am J Phys Med Rehabil. 2016;95(7):516–24. [cited 2019 Jul 9]. http://www.ncbi.nlm.nih.gov/pubmed/26745226.

    PubMed  Google Scholar 

  107. Song CH, Petrofsky JS, Lee SW, Lee KJ, Yim JE. Effects of an exercise program on balance and trunk proprioception in older adults with diabetic neuropathies. Diabetes Technol Ther. 2011;13(8):803–11. http://www.ncbi.nlm.nih.gov/pubmed/21561371.

    PubMed  Google Scholar 

  108. Chetlin RD, Gutmann L, Tarnopolsky MA, Ullrich IH, Yeater RA. Resistance training exercise and creatine in patients with Charcot-Marie-Tooth disease. Muscle Nerve. 2004;30(1):69–76.

    CAS  PubMed  Google Scholar 

  109. Burns J, Sman AD, Cornett KMD, Wojciechowski E, Walker T, Menezes MP, et al. Safety and efficacy of progressive resistance exercise for Charcot-Marie-Tooth disease in children: a randomised, double-blind, sham-controlled trial. Lancet Child Adolesc Heal. 2017;1(2):106–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, K.S., Andersen, H. (2023). Motor Neuropathy in Diabetes. In: Tesfaye, S., Gibbons, C.H., Malik, R.A., Veves, A. (eds) Diabetic Neuropathy. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-15613-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15613-7_11

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15612-0

  • Online ISBN: 978-3-031-15613-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics