Skip to main content

Immune Dysregulation Associated with Very Early-Onset Inflammatory Bowel Disease

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease

Abstract

Inflammatory bowel disease (IBD) is a multifactorial disease caused by dysregulated immune responses to commensal or pathogenic microbes in the intestine, resulting in chronic intestinal inflammation. An emerging population of patients with IBD who present ≤5 years of age represent a unique form of disease, termed Very Early-Onset (VEO)-IBD, that can be phenotypically and genetically distinct from pediatric and adult-onset IBD. VEO-IBD may be associated with increased disease severity, aggressive progression, and poor responsiveness to most conventional therapies. Here, we discuss the phenotype of VEO-IBD, genetic variants associated with disease, and immunologic studies that can point to the contribution of specific genetic variants that lead to the development of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stokkers PC, et al. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut. 1999;45(3):395–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Goyette P, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47(2):172–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Eggena M, et al. Identification of histone H1 as a cognate antigen of the ulcerative colitis-associated marker antibody pANCA. J Autoimmun. 2000;14(1):83–97.

    CAS  PubMed  Google Scholar 

  4. Saxon A, et al. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol. 1990;86(2):202–10.

    CAS  PubMed  Google Scholar 

  5. Sattler S, et al. IL-10-producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. J Autoimmun. 2014;50:107–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12.

    CAS  PubMed  Google Scholar 

  8. Jostins L, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobs JP, Braun J. Immune and genetic gardening of the intestinal microbiome. FEBS Lett. 2014;588(22):4102–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. D'Inca R, et al. Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn’s disease. Aliment Pharmacol Ther. 2006;23(10):1455–61.

    CAS  PubMed  Google Scholar 

  11. Buhner S, et al. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation? Gut. 2006;55(3):342–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298–306.

    CAS  PubMed  Google Scholar 

  13. Maynard CL, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.

    CAS  PubMed  Google Scholar 

  15. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lodes MJ, et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest. 2004;113(9):1296–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Baumgart M, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1(5):403–18.

    CAS  PubMed  Google Scholar 

  20. Darfeuille-Michaud A, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127(2):412–21.

    PubMed  Google Scholar 

  21. Dalwadi H, et al. The Crohn’s disease-associated bacterial protein I2 is a novel enteric t cell superantigen. Immunity. 2001;15(1):149–58.

    CAS  PubMed  Google Scholar 

  22. Walker AW, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.

    PubMed  PubMed Central  Google Scholar 

  23. Willing B, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15(5):653–60.

    PubMed  Google Scholar 

  24. Willing BP, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139(6):1844–1854 e1.

    PubMed  Google Scholar 

  25. Martin HM, et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology. 2004;127(1):80–93.

    CAS  PubMed  Google Scholar 

  26. Benchimol EI, et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58(11):1490–7.

    CAS  PubMed  Google Scholar 

  27. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62(12):1795–805.

    CAS  PubMed  Google Scholar 

  28. Durandy A, Kracker S, Fischer A. Primary antibody deficiencies. Nat Rev Immunol. 2013;13(7):519–33.

    CAS  PubMed  Google Scholar 

  29. Glocker EO, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Glocker E, Grimbacher B. Inflammatory bowel disease: is it a primary immunodeficiency? Cell Mol Life Sci. 2012;69(1):41–8.

    CAS  PubMed  Google Scholar 

  31. Ruemmele FM, et al. Characteristics of inflammatory bowel disease with onset during the first year of life. J Pediatr Gastroenterol Nutr. 2006;43(5):603–9.

    PubMed  Google Scholar 

  32. Cannioto Z, et al. IBD and IBD mimicking enterocolitis in children younger than 2 years of age. Eur J Pediatr. 2009;168(2):149–55.

    CAS  PubMed  Google Scholar 

  33. de Ridder L, et al. Genetic susceptibility has a more important role in pediatric-onset Crohn’s disease than in adult-onset Crohn’s disease. Inflamm Bowel Dis. 2007;13(9):1083–92.

    PubMed  Google Scholar 

  34. Biank V, Broeckel U, Kugathasan S. Pediatric inflammatory bowel disease: clinical and molecular genetics. Inflamm Bowel Dis. 2007;13(11):1430–8.

    PubMed  Google Scholar 

  35. Glocker EO, et al. Infant colitis—it’s in the genes. Lancet. 2010;376(9748):1272.

    PubMed  Google Scholar 

  36. Worthey EA, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62.

    PubMed  Google Scholar 

  37. Agarwal S, Mayer L. Diagnosis and treatment of gastrointestinal disorders in patients with primary immunodeficiency. Clin Gastroenterol Hepatol. 2013;11(9):1050–63.

    PubMed  PubMed Central  Google Scholar 

  38. Mao H, et al. Exome sequencing identifies novel compound heterozygous mutations of IL-10 receptor 1 in neonatal-onset Crohn’s disease. Genes Immun. 2012;13(5):437–42.

    CAS  PubMed  Google Scholar 

  39. Avitzur Y, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology. 2014;146(4):1028–39.

    CAS  PubMed  Google Scholar 

  40. Kammermeier J, et al. Targeted gene panel sequencing in children with very early onset inflammatory bowel disease-evaluation and prospective analysis. J Med Genet. 2014;51(11):748–55.

    CAS  PubMed  Google Scholar 

  41. Kelsen JR, et al. North American society for pediatric gastroenterology, hepatology, and nutrition position paper on the evaluation and management for patients with very early-onset inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2020;70(3):389–403.

    PubMed  Google Scholar 

  42. Muise AM, Snapper SB, Kugathasan S. The age of gene discovery in very early onset inflammatory bowel disease. Gastroenterology. 2012;143(2):285–8.

    PubMed  Google Scholar 

  43. Uhlig HH, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147(5):990–1007 e3.

    PubMed  Google Scholar 

  44. Kelsen JR, et al. The unique disease course of children with very early onset-inflammatory bowel disease. Inflamm Bowel Dis. 2020;26(6):909–18.

    PubMed  Google Scholar 

  45. Heyman MB, et al. Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry. J Pediatr. 2005;146(1):35–40.

    PubMed  Google Scholar 

  46. Mamula P, et al. Inflammatory bowel disease in children 5 years of age and younger. Am J Gastroenterol. 2002;97(8):2005–10.

    PubMed  Google Scholar 

  47. Benchimol EI, et al. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology. 2014;147(4):803–813 e7. quiz e14-5

    PubMed  Google Scholar 

  48. Aloi M, et al. Phenotype and disease course of early-onset pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(4):597–605.

    PubMed  Google Scholar 

  49. Bramuzzo M, et al. Efficacy and safety of infliximab in very early onset inflammatory bowel disease: a national comparative retrospective study. United European Gastroenterol J. 2019;7(6):759–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chalaris A, et al. ADAM17-mediated shedding of the IL6R induces cleavage of the membrane stub by gamma-secretase. Biochim Biophys Acta. 2010;1803(2):234–45.

    CAS  PubMed  Google Scholar 

  51. Blaydon DC, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365(16):1502–8.

    CAS  PubMed  Google Scholar 

  52. Karamchandani-Patel G, et al. Congenital alterations of NEMO glutamic acid 223 result in hypohidrotic ectodermal dysplasia and immunodeficiency with normal serum IgG levels. Ann Allergy Asthma Immunol. 2011;107(1):50–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zimmer KP, et al. Esophageal stenosis in childhood: dystrophic epidermolysis bullosa without skin blistering due to collagen VII mutations. Gastroenterology. 2002;122(1):220–5.

    PubMed  Google Scholar 

  54. Sadler E, et al. Novel KIND1 gene mutation in Kindler syndrome with severe gastrointestinal tract involvement. Arch Dermatol. 2006;142(12):1619–24.

    CAS  PubMed  Google Scholar 

  55. Ussar S, et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 2008;4(12):e1000289.

    PubMed  PubMed Central  Google Scholar 

  56. Kern JS, et al. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms. J Pathol. 2007;213(4):462–70.

    CAS  PubMed  Google Scholar 

  57. Campbell P, et al. Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR. J Invest Dermatol. 2014;134(10):2570–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fiskerstrand T, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012;366(17):1586–95.

    CAS  PubMed  Google Scholar 

  59. Bianco AM, Girardelli M, Tommasini A. Genetics of inflammatory bowel disease from multifactorial to monogenic forms. World J Gastroenterol. 2015;21(43):12296–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Naviglio S, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8(8):770–4.

    PubMed  Google Scholar 

  61. Chalaris A, et al. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med. 2010;207(8):1617–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nenci A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446(7135):557–61.

    CAS  PubMed  Google Scholar 

  63. Zaph C, et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature. 2007;446(7135):552–6.

    CAS  PubMed  Google Scholar 

  64. Cheng LE, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132(1):124–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Luetteke NC, et al. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell. 1993;73(2):263–78.

    CAS  PubMed  Google Scholar 

  66. Mann GB, et al. Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell. 1993;73(2):249–61.

    CAS  PubMed  Google Scholar 

  67. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.

    CAS  PubMed  Google Scholar 

  68. Hand TW, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science. 2012;337(6101):1553–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cong Y, et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A. 2009;106(46):19256–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mombaerts P, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.

    CAS  PubMed  Google Scholar 

  71. Shinkai Y, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855–67.

    CAS  PubMed  Google Scholar 

  72. Peschon JJ, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180(5):1955–60.

    CAS  PubMed  Google Scholar 

  73. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131(4):959–71.

    CAS  PubMed  Google Scholar 

  74. Vetrie D, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–33.

    CAS  Google Scholar 

  75. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93(3):190–7.

    CAS  PubMed  Google Scholar 

  76. Alangari A, et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol. 2012;130(2):481–8 e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pai SY, Cowan MJ. Stem cell transplantation for primary immunodeficiency diseases: the North American experience. Curr Opin Allergy Clin Immunol. 2014;14(6):521–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shearer WT, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–8.

    PubMed  Google Scholar 

  79. Puel A, et al. Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.

    CAS  PubMed  Google Scholar 

  80. Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med. 2003;349(19):1821–8.

    CAS  PubMed  Google Scholar 

  81. Nielsen C, et al. Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol. 2014;34(8):916–21.

    PubMed  Google Scholar 

  82. Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;79(5):922.

    PubMed  Google Scholar 

  83. Watanabe Y, et al. T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. J Allergy Clin Immunol. 2013;132(3):648–655 e1.

    CAS  PubMed  Google Scholar 

  84. Shimizu M, et al. Aberrant glycosylation of IgA in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. J Allergy Clin Immunol. 2013;131(2):587–90 e1-3.

    CAS  PubMed  Google Scholar 

  85. Westerberg LS, et al. Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function. Blood. 2012;119(17):3966–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Becker-Herman S, et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J Exp Med. 2011;208(10):2033–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lanzi G, et al. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J Exp Med. 2012;209(1):29–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nguyen DD, et al. Lymphocyte-dependent and Th2 cytokine-associated colitis in mice deficient in Wiskott-Aldrich syndrome protein. Gastroenterology. 2007;133(4):1188–97.

    CAS  PubMed  Google Scholar 

  89. Maillard MH, et al. The Wiskott-Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J Exp Med. 2007;204(2):381–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nguyen DD, et al. Wiskott-Aldrich syndrome protein deficiency in innate immune cells leads to mucosal immune dysregulation and colitis in mice. Gastroenterology. 2012;143(3):719–29 e1-2.

    CAS  PubMed  Google Scholar 

  91. Ferrua F, et al. Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematol. 2019;6(5):e239–53.

    PubMed  PubMed Central  Google Scholar 

  92. Shin CR, et al. Outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome. Bone Marrow Transplant. 2012;47(11):1428–35.

    CAS  PubMed  Google Scholar 

  93. Chan AY, et al. Hematopoietic cell transplantation in patients with primary immune regulatory disorders (PIRD): a primary immune deficiency treatment consortium (PIDTC) survey. Front Immunol. 2020;11:239.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. de la Morena MT, et al. Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. J Allergy Clin Immunol. 2017;139(4):1282–92.

    PubMed  Google Scholar 

  95. Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2012. J Allergy Clin Immunol. 2013;131(3):675–82.

    PubMed  Google Scholar 

  96. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211.

    PubMed  PubMed Central  Google Scholar 

  97. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol. 2007;2007:89017.

    PubMed  PubMed Central  Google Scholar 

  99. Zeissig S, et al. Early-onset Crohn’s disease and autoimmunity associated with a variant in CTLA-4. Gut. 2014;64(12):1889–97.

    PubMed  Google Scholar 

  100. Cebula A, et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature. 2013;497(7448):258–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lathrop SK, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chinen T, et al. A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J Exp Med. 2010;207(11):2323–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schultz M, et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Phys. 1999;276(6 Pt 1):G1461–72.

    CAS  Google Scholar 

  104. Schiering C, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shim JO, et al. Interleukin-10 receptor mutations in children with neonatal-onset Crohn's disease and intractable ulcerating enterocolitis. Eur J Gastroenterol Hepatol. 2013;25(10):1235–40.

    CAS  PubMed  Google Scholar 

  106. Moore KW, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    CAS  PubMed  Google Scholar 

  107. Hutchins AP, Diez D, Miranda-Saavedra D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief Funct Genomics. 2013;12(6):489–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Engelhardt KR, Grimbacher B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr Top Microbiol Immunol. 2014;380:1–18.

    CAS  PubMed  Google Scholar 

  109. Murray PJ. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci U S A. 2005;102(24):8686–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Neven B, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013;122(23):3713–22.

    CAS  PubMed  Google Scholar 

  111. Engelhardt KR, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131(3):825–30.

    CAS  PubMed  Google Scholar 

  112. Murugan D, et al. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J Clin Immunol. 2014;34(3):331–9.

    CAS  PubMed  Google Scholar 

  113. Kuhn R, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.

    CAS  Google Scholar 

  114. Sellon RK, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66(11):5224–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rubtsov YP, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58.

    CAS  PubMed  Google Scholar 

  116. Roers A, et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med. 2004;200(10):1289–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shouval DS, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity. 2014;40(5):706–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zigmond E, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity. 2014;40(5):720–33.

    CAS  PubMed  Google Scholar 

  119. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383–90.

    CAS  PubMed  Google Scholar 

  120. Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity. 2012;37(4):601–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Spits H, et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.

    CAS  PubMed  Google Scholar 

  122. Sonnenberg GF, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hepworth MR, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bernink JH, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14(3):221–9.

    CAS  PubMed  Google Scholar 

  125. Geremia A, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208(6):1127–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Takayama T, et al. Imbalance of NKp44(+)NKp46(−) and NKp44(−)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology. 2010;139(3):882–92. 892 e1–3

    CAS  PubMed  Google Scholar 

  127. Ciccia F, et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 2012;64(6):1869–78.

    CAS  PubMed  Google Scholar 

  128. Fuchs A, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity. 2013;38(4):769–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hepworth MR, et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science. 2015; https://doi.org/10.1126/science.aaa4812.

  130. Gunasekera DC, et al. The development of colitis in Il10(−/−) mice is dependent on IL-22. Mucosal Immunol. 2020;13(3):493–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mizoguchi A, et al. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. 2018;53(4):465–74.

    CAS  PubMed  Google Scholar 

  132. Kang EM, et al. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2011;127(6):1319–26. quiz 1327-8

    PubMed  PubMed Central  Google Scholar 

  133. Abo A, et al. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991;353(6345):668–70.

    CAS  PubMed  Google Scholar 

  134. Matute JD, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114(15):3309–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Marks DJ, et al. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol. 2009;104(1):117–24.

    CAS  PubMed  Google Scholar 

  136. Jones LB, et al. Special article: chronic granulomatous disease in the United Kingdom and Ireland: a comprehensive national patient-based registry. Clin Exp Immunol. 2008;152(2):211–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Rosenzweig SD. Inflammatory manifestations in chronic granulomatous disease (CGD). J Clin Immunol. 2008;28(Suppl. 1):S67–72.

    PubMed  Google Scholar 

  138. Foster CB, et al. Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J Clin Invest. 1998;102(12):2146–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Muise AM, et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut. 2012;61(7):1028–35.

    CAS  PubMed  Google Scholar 

  140. Dhillon SS, et al. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology. 2014;147(3):680–689 e2.

    CAS  PubMed  Google Scholar 

  141. Roos D, Law SK. Hematologically important mutations: leukocyte adhesion deficiency. Blood Cells Mol Dis. 2001;27(6):1000–4.

    CAS  PubMed  Google Scholar 

  142. van de Vijver E, et al. Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cells Mol Dis. 2012;48(1):53–61.

    PubMed  Google Scholar 

  143. Schmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. 2013;55(1):49–58.

    CAS  PubMed  Google Scholar 

  144. Davis MK, et al. Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J Inherit Metab Dis. 2008;31(Suppl. 3):505–9.

    PubMed  Google Scholar 

  145. Uzel G, et al. Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis. 2010;51(12):1429–34.

    PubMed  PubMed Central  Google Scholar 

  146. Kato K, et al. Successful allogeneic hematopoietic stem cell transplantation for chronic granulomatous disease with inflammatory complications and severe infection. Int J Hematol. 2011;94(5):479–82.

    PubMed  Google Scholar 

  147. de Luca A, et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A. 2014;111(9):3526–31.

    PubMed  PubMed Central  Google Scholar 

  148. Bianco AM, et al. Mevalonate kinase deficiency and IBD: shared genetic background. Gut. 2014;63(8):1367–8.

    PubMed  Google Scholar 

  149. Kuloglu Z, et al. An infant with severe refractory Crohn’s disease and homozygous MEFV mutation who dramatically responded to colchicine. Rheumatol Int. 2012;32(3):783–5.

    PubMed  Google Scholar 

  150. Beser OF, et al. Association of inflammatory bowel disease with familial Mediterranean fever in Turkish children. J Pediatr Gastroenterol Nutr. 2013;56(5):498–502.

    CAS  PubMed  Google Scholar 

  151. Mora AJ, Wolfsohn DM. The management of gastrointestinal disease in Hermansky-Pudlak syndrome. J Clin Gastroenterol. 2011;45(8):700–2.

    PubMed  Google Scholar 

  152. Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol. 2013;147(3):155–74.

    CAS  PubMed  Google Scholar 

  153. Speckmann C, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149(1):133–41.

    CAS  PubMed  Google Scholar 

  154. Canna SW, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698–701.

    CAS  PubMed  Google Scholar 

  155. Romberg N, Vogel TP, Canna SW. NLRC4 inflammasomopathies. Curr Opin Allergy Clin Immunol. 2017;17(6):398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Latour S, Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol. 2015;39:115–23.

    CAS  PubMed  Google Scholar 

  157. Pedersen J, et al. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol Med. 2014;20(11):652–65.

    CAS  PubMed  Google Scholar 

  158. Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol. 2015;35(4):331–8.

    CAS  PubMed  Google Scholar 

  159. Filipovich AH. The expanding spectrum of hemophagocytic lymphohistiocytosis. Curr Opin Allergy Clin Immunol. 2011;11(6):512–6.

    CAS  PubMed  Google Scholar 

  160. Okada Y. From the era of genome analysis to the era of genomic drug discovery: a pioneering example of rheumatoid arthritis. Clin Genet. 2014;86(5):432–40.

    CAS  PubMed  Google Scholar 

  161. Ludvigsson JF, et al. Journal of Clinical immunology. 2014;34(4):444–51. https://doi.org/10.1007/s10875-014-0009-4.

  162. Palm NW, et al. Cell. 2014;158(5):1000–1010. https://doi.org/10.1016/j.cell.2014.08.006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith R. Kelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kelsen, J.R., Patel, T., Sullivan, K. (2023). Immune Dysregulation Associated with Very Early-Onset Inflammatory Bowel Disease. In: Mamula, P., Kelsen, J.R., Grossman, A.B., Baldassano, R.N., Markowitz, J.E. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-14744-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14744-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14743-2

  • Online ISBN: 978-3-031-14744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics