Skip to main content

Cytokines and Inflammatory Bowel Disease

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease
  • 679 Accesses

Abstract

Cytokines play a critical role in the development and progression of inflammatory bowel disease. The cytokines are a complex network of proteins that influence the recruitment, differentiation, function, and survival of our immune cells. They are produced by a variety of cells in the intestine and impact the homeostasis of pro-inflammatory and anti-inflammatory responses. These proteins are so crucial to the inflammatory response in IBD that many of our current and future therapies target their control. Here, we describe the current understanding of cytokines and their impact on IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Neurath MF, et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183(6):2605–16.

    CAS  PubMed  Google Scholar 

  2. Reinecker HC, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol. 1993;94(1):174–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Camoglio L, et al. Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis. 1998;4(4):285–90.

    CAS  PubMed  Google Scholar 

  4. Boirivant M, et al. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188(10):1929–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shetty A, Forbes A. Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn’s disease. Am J Pharmacogenomics. 2002;2(4):215–21.

    CAS  PubMed  Google Scholar 

  6. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513(7516):90–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J, Kos R, Garssen J, Redegeld F. Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target. Cells. 2019;8(12):1486.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Strober W, et al. Reciprocal IFN-gamma and TGF-beta responses regulate the occurrence of mucosal inflammation. Immunol Today. 1997;18(2):61–4.

    CAS  PubMed  Google Scholar 

  9. Neurath MF, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27(7):1743–50.

    CAS  PubMed  Google Scholar 

  10. Murch SH, et al. Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut. 1991;32(8):913–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reimund JM, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol. 1996;16(3):144–50.

    CAS  Google Scholar 

  12. Targan SR, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s disease cA2 study group. N Engl J Med. 1997;337(15):1029–35.

    CAS  PubMed  Google Scholar 

  13. Hanauer SB, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    CAS  PubMed  Google Scholar 

  14. Colgan SP, et al. Interferon-gamma induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Phys. 1994;267(2 Pt 1):C402–10.

    CAS  Google Scholar 

  15. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.

    CAS  PubMed  Google Scholar 

  16. Reinisch W, et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut. 2006;55(8):1138–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hommes DW, et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut. 2006;55(8):1131–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cominelli F, Pizarro TT. Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther. 1996;10(Suppl. 2):49–53. discussion 54

    CAS  PubMed  Google Scholar 

  19. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut. 1989;30(6):835–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Andus T, et al. Imbalance of the interleukin 1 system in colonic mucosa–association with intestinal inflammation and interleukin 1 receptor antagonist [corrected] genotype 2. Gut. 1997;41(5):651–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Seo SU, et al. Distinct commensals induce interleukin-1beta via NLRP3 Inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015;42(4):744–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao L, Kitani A, Similuk M, Oler AJ, Albenberg L, Kelsen J, Aktay A, Quezado M, Yao M, Montgomery-Recht K, Fuss IJ, Strober W. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn’s disease. J Clin Invest. 2018;128(5):1793–806.

    PubMed  PubMed Central  Google Scholar 

  23. Mao L, Kitani A, Strober W, Fuss IJ. The role of NLRP3 and IL-1beta in the pathogenesis of inflammatory bowel disease. Front Immunol. 2018;9:2566.

    PubMed  PubMed Central  Google Scholar 

  24. Van Assche G, et al. A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol. 2003;98(2):369–76.

    PubMed  Google Scholar 

  25. Van Assche G, et al. Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut. 2006;55(11):1568–74.

    PubMed  PubMed Central  Google Scholar 

  26. Waldner MJ, Neurath MF. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin Immunol. 2014;26(1):75–9.

    CAS  PubMed  Google Scholar 

  27. Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci. 2012;8(9):1237–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cantor MJ, Nickerson P, Bernstein CN. The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol. 2005;100(5):1134–42.

    CAS  PubMed  Google Scholar 

  29. Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 2005;28(3):187–96.

    CAS  PubMed  Google Scholar 

  30. Ito H, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology. 2004;126(4):989–96. discussion 947

    CAS  PubMed  Google Scholar 

  31. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33.

    CAS  PubMed  Google Scholar 

  32. Fuss IJ, et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006;12(1):9–15.

    PubMed  Google Scholar 

  33. Mannon PJ, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351(20):2069–79.

    CAS  PubMed  Google Scholar 

  34. Feagan B, et al. A multicenter, randomized, double-blind, placebo-con- trolled phase 3 study of Ustekinumab, a human monoclonal antibody to IL-12/23P40, in patients with moderately- to severely-active Crohn’s disease who are naïve or not refractory to anti-Tnfα: results from the UnITI-2 study. American College Gastroenterology meeting 2015. Abstract 54.

    Google Scholar 

  35. Fuss IJ, et al. Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology. 1999;117(5):1078–88.

    CAS  PubMed  Google Scholar 

  36. Harrington LE, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    CAS  PubMed  Google Scholar 

  37. Hue S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203(11):2473–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fujino S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Langrish CL, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kullberg MC, et al. IL-23 plays a key role in helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 2006;203(11):2485–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.

    CAS  PubMed  Google Scholar 

  42. Biancheri P, et al. The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013;6(1):13.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Song X, Gao H, Lin Y, Yao Y, Zhu S, Wang J, Liu Y, Yao X, Meng G, Shen N, Shi Y, Iwakura Y, Qian Y. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity. 2014;40(1):140–52.

    CAS  PubMed  Google Scholar 

  44. Im E, Jung J, Rhee SH. Toll-like receptor 5 engagement induces interleukin-17C expression in intestinal epithelial cells. J Interferon Cytokine Res. 2012;32(12):583–91.

    CAS  PubMed Central  Google Scholar 

  45. Mangan PR, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441(7090):231–4.

    CAS  PubMed  Google Scholar 

  46. Bettelli E, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    CAS  PubMed  Google Scholar 

  47. Ahern PP, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33(2):279–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sujino T, et al. Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology. 2011;141(3):1014–23.

    CAS  PubMed  Google Scholar 

  49. Duerr RH, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang K, et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn disease. Am J Hum Genet. 2009;84(3):399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pizarro TT, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162(11):6829–35.

    CAS  PubMed  Google Scholar 

  52. Reuter BK, Pizarro TT. Commentary: the role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe? Eur J Immunol. 2004;34(9):2347–55.

    CAS  PubMed  Google Scholar 

  53. Okamura H, et al. Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol. 1998;10(3):259–64.

    CAS  PubMed  Google Scholar 

  54. Nakanishi K, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev. 2001;12(1):53–72.

    CAS  PubMed  Google Scholar 

  55. Siegmund B, et al. IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci U S A. 2001;98(23):13249–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Maeda S, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science. 2005;307(5710):734–8.

    CAS  PubMed  Google Scholar 

  57. Saitoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.

    CAS  PubMed  Google Scholar 

  58. Bersudsky M, et al. Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut. 2014;63(4):598–609.

    CAS  PubMed  Google Scholar 

  59. Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr HA, Hartmann G, Dinarello CA, Endres S, Eigler A. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1264–73.

    CAS  PubMed  Google Scholar 

  60. Sivakumar PV, Westrich GM, Kanaly S, Garka K, Born TL, Derry JM, Viney JL. Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut. 2002;50:812–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Takagi H, Kanai T, Okazawa A, Kishi Y, Sato T, Takaishi H, Inoue N, Ogata H, Iwao Y, Hoshino K, Takeda K, Akira S, Watanabe M, Ishii H, Hibi T. Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol. 2003;38:837–44.

    CAS  PubMed  Google Scholar 

  62. Reuter BK, Pizarro TT. Commentary: the role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe? Eur J Immunol. 2004;34:2347–55.

    CAS  PubMed  Google Scholar 

  63. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O’HUigin C, Marincola FM, Trinchieri G. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207:1625–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sasaki Y, Otsuka K, Arimochi H, Tsukumo S-I, Yasutomo K. Distinct roles of IL-1β and IL-18 in NLRC4-induced. Front Immunol. 2020;11:591713. https://doi.org/10.3389/fimmu.2020.591713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Novick D, Dinarello CA. IL-18 binding protein reverses the life-threatening hyperinflammation of a baby with the NLRC4 mutation. J Allergy Clin Immunol. 2017;140(1):316. https://doi.org/10.1016/j.jaci.2017.02.037.

    Article  CAS  PubMed  Google Scholar 

  66. Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J, Surrey LF, Russo P, Sleight A, Schiffrin E, Gabay C, Goldbach-Mansky R, Behrens EM. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698–701. https://doi.org/10.1016/j.jaci.2016.10.022.

    Article  CAS  PubMed  Google Scholar 

  67. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O’Connor W Jr, Murphy AJ, Valenzuela DM, Yancopoulos GD, Booth CJ, Cho JH, Ouyang W, Abraham C, Flavell RA. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 2012;491:259–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Wang K, Han GC, Wang RX, Xiao H, Hou CM, Guo RF, Dou Y, Shen BF, Li Y, Chen GJ. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 2014;7:1106–15.

    CAS  PubMed  Google Scholar 

  69. Fuss IJ, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113(10):1490–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Heller F, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129(2):550–64.

    CAS  PubMed  Google Scholar 

  71. Butera A, Di Paola M, Vitali F, De Nitto D, Covotta F, Borrini F, Pica R, De Filippo C, Cavalieri D, Giuliani A, Pronio A, Boirivant M. IL-13 mRNA tissue content identifies two subsets of adult ulcerative colitis patients with different clinical and mucosa-associated microbiota profiles. J Crohns Colitis. 2020;14(3):369–80.

    PubMed  Google Scholar 

  72. Schiechl G, et al. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest. 121(5):1692–708.

    Google Scholar 

  73. Reinisch W, et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut. 2015 Jun;64(6):894–900.

    CAS  PubMed  Google Scholar 

  74. Fuss I, et al. IL-13Rα2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut. 2014;63(11):1728–36.

    CAS  PubMed  Google Scholar 

  75. Danese S, et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64(2):243–9.

    CAS  PubMed  Google Scholar 

  76. Guo L, et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc Natl Acad Sci U S A. 2009;106:13463–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schmitz J, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:470–90.

    Google Scholar 

  78. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A. 2009;106:9021–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lüthi AU, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31:84–98.

    PubMed  Google Scholar 

  80. Lefrancais E, et al. IL-33 is processed into mature bioactive forms by neutrophil elastese and cathepsin G. Proc Natl Acad Sci U S A. 2012;109:1673–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Carriere V, Roussel L, Ortega N, Lacorre D-A, Americh L, Aguilar L, Bouche G. Jean-Philippe GirardIL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Natl Acad Sci. 2007;104(1):282–7.

    CAS  Google Scholar 

  82. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–10.

    CAS  PubMed  Google Scholar 

  83. Smith DE. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin Exp Allergy. 2010;40:200–8.

    CAS  PubMed  Google Scholar 

  84. Pastorelli L, et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci U S A. 2010;107:8017–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Seidelin JB, et al. IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett. 2010;128:80–5.

    CAS  PubMed  Google Scholar 

  86. Pascual-Reguant A, Sarmadi JB, Baumann C, Noster R, Cirera-Salinas D, Curato C, Pelczar P, Huber S, Zielinski CE, Löhning M, Hauser AE, Esplugues E. T H 17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine. Mucosal Immunol. 2017;10(6):1431–42.

    CAS  PubMed  Google Scholar 

  87. Schiering C, Krausgruber T, Chomka A, Fröhlich A, Adelmann K, Wohlfert EA, Pott J, Griseri T, Bollrath J, Hegazy AN, Harrison OJ, Owens BMJ, Löhning M, Belkaid Y, Fallon PG, Powrie F. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Phuong NNT, Palmieri V, Adamczyk A, Klopfleisch R, Langhorst J, Hansen W, Westendorf AM, Pastille E. IL-33 drives expansion of type 2 innate lymphoid cells and regulatory T cells and protects mice from severe, acute colitis. Font Immunol. 2021;12:669787.

    CAS  Google Scholar 

  89. Rosen M, et al. STAT6 deficiency ameliorates severity of oxazolone colitis by decreasing expression of claudin-2 and Th2-inducing cytokines. J Immunol. 2013;190(4):1849–58.

    CAS  PubMed  Google Scholar 

  90. Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikwa T, Saito Y, Fujiyama Y, Andoh A. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45:999–1007.

    CAS  PubMed  Google Scholar 

  91. Tahaghoghi-Hajghorbani S, Ajami A, Ghorbanalipoor S, Hosseini-khah Z, Taghiloo S, Khaje-Enayati P, Hosseini V. Protective effect of TSLP and IL-33 cytokines in ulcerative colitis. Auto Immun Highlights. 2019;10(1):1.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nold MF, Nold-Petry CA, Zepp JA, et al. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010;11(11):1014–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nold-Petry CA, Lo CY, Rudloff I, et al. IL-37 requires the receptors IL-18Ra and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol. 2015;16(4):354–65.

    CAS  PubMed  Google Scholar 

  94. McNamee EN, Masterson JC, Jedlicka P, et al. Interleukin 37 expression protects mice from colitis. Proc Natl Acad Sci U S A. 2011;108(40):16711–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nowarski R, Jackson R, Gagliani N, et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell. 2015;163(6):1444–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang D-W, Dong N, Wu Y, Zhu X-M, Wang C-T, Yao Y-M. Interleukin-37 enhances the suppressive activity of naturally occurring CD4+CD25+ regulatory T cells. Scientific reports, vol 6. Article number: 38955, 2016.

    Google Scholar 

  97. Kluck V, van Duren RC, Cavalli G, et al. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann Rheum Dis. 2020;79:536–44.

    PubMed  Google Scholar 

  98. Fonseca-Camarillo G, Furuzawa-Caraballeda J, Yamamoto-Furusho JK. Interleukin 35 (IL-35) and IL-37: intestinal and peripheral expression by T and B regulatory cells in patients with inflammatory bowel disease. Cytokine. 2015;75(2):389–402.

    CAS  PubMed  Google Scholar 

  99. Zhang ZZ, Zhang Y, He T, Sweeney CL, Baris S, Karakoc-Aydiner E, Yao Y, Ertem D, Matthews HF, Gonzaga-Jauregui C, Malech HL, Su HC, Ozen A, Smith KGC, Lenardo MJ. Homozygous IL37 mutation associated with infantile inflammatory bowel disease. PNAS. 2021;118(10):e2009217118.

    CAS  PubMed Central  Google Scholar 

  100. Arendse B, et al. IL-9 is a susceptibility factor in Leishmani major infection by promoting detrimental Th2/type 2 responses. J Immunol. 2005;174:2205–11.

    CAS  PubMed  Google Scholar 

  101. Kim BS, et al. Innate lymphoid cells and allergic inflammation. Curr Opin Immunol. 2013;25:738–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev. 2013;252:104–15.

    PubMed  PubMed Central  Google Scholar 

  103. Gerlach K, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014 Jul;15(7):676–86.

    CAS  PubMed  Google Scholar 

  104. Li SH, Wang H, Chao K, Ding L, Feng R, Qiu Y, Feng T, Zhou G, Ji-Fan H, Chen M, Zhang S. Cytokine IL9 triggers the pathogenesis of inflammatory bowel disease through the miR21-CLDN8 pathway. Inflamm Bowel Dis. 2018;24(10):2211–23. https://doi.org/10.1093/ibd/izy187.

    Article  PubMed  Google Scholar 

  105. Hundorfean G, et al. Functional relevance of Th helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:180–6.

    PubMed  Google Scholar 

  106. Prehn JL, et al. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 2007;178(7):4033–8.

    CAS  PubMed  Google Scholar 

  107. Takedatsu H, et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology. 2008;135(2):552–67.

    CAS  PubMed  Google Scholar 

  108. Meylan F, et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008;29(1):79–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schreiber TH, et al. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest. 2010;120(10):3629–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Meylan F, et al. The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol. 2014;7:958–68.

    CAS  PubMed  Google Scholar 

  111. Yu X, et al. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 2014;7:730–40.

    CAS  PubMed  Google Scholar 

  112. Prehn JL, et al. Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clin Immunol. 2004;112:66–77.

    CAS  PubMed  Google Scholar 

  113. Ahn YO, et al. Human group3 innate lymphoid cells express DR3 and respond to TL1A with enhanced IL-22 production and IL-2-dependent proliferation. Eur J Immunol. 2015;45:2335–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zheng Y, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14:282–9.

    CAS  PubMed  Google Scholar 

  115. Zenewicz LA, et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008;29:947–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kamada N, et al. TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn’s disease. Inflamm Bowel Dis. 2010;16(4):568–75.

    PubMed  Google Scholar 

  117. Michelsen KS, et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One. 2009;4(3):e4719.

    PubMed  PubMed Central  Google Scholar 

  118. McClane SJ, Rombeau JL. Cytokines and inflammatory bowel disease: a review. JPEN J Parenter Enteral Nutr. 1999;23(5 Suppl):S20–4.

    CAS  PubMed  Google Scholar 

  119. Powrie F, et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med. 1996;183(6):2669–74.

    CAS  PubMed  Google Scholar 

  120. Read SV, et al. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nakamura K, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol. 2004;172(2):834–42.

    CAS  PubMed  Google Scholar 

  122. Monteleone G, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–13.

    CAS  PubMed  Google Scholar 

  123. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin Shanghai. 2009;41(4):263–72.

    CAS  PubMed  Google Scholar 

  124. Boirivant M, Pallone F, Di Giacinto C. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroeterol. 2006;131(6):1786–98.

    CAS  Google Scholar 

  125. Izcue A, et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity. 2008;28(4):559–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schiering C, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang Y, et al. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 2011;35(3):337–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wohlfert EA, et al. GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J Clin Invest. 2011;121(11):4503–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Maul J, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–78.

    CAS  PubMed  Google Scholar 

  130. Sznurkowska K, Bockowska M, Zielinski M, Plata-Nazar K, Trzonkowski P, Liberek A, Kaminska B, Szlagatys-Sidorkiewicz A. Peripheral regulatory T cells and anti-inflammatory cytokines in children with juvenile idiopathic arthritis. Acta Biochim Pol. 2018;65(1):119–23.

    CAS  PubMed  Google Scholar 

  131. Fenton TM, Kelly A, Shuttleworth EE, Smedley C, Atakilit A, Powrie F, Campbell S, Nishimura SL, Sheppard D, Levison S, Worthington JJ, Lehtinen MJ, Travis MA. Inflammatory cues enhance TGFβ activation by distinct subsets of human intestinal dendritic cells via integrin αvβ8. Mucosal Immunol. 2017;10(3):624–34.

    CAS  PubMed  Google Scholar 

  132. Sarmento O, et al. Alterations in the FOXP3-EZH2 pathway associates with increased susceptibility to colitis in both mice and human. Inflamm Bowel Dis. 2016;22(Suppl. 1):S5–6.

    Google Scholar 

  133. Lord JD, Shows DM, Chen J, Thirlby RC. Human blood and mucosal regulatory T cells express activation markers and inhibitory receptors in inflammatory bowel disease. PLoS One. 2015;10(8):e0136485.

    PubMed  PubMed Central  Google Scholar 

  134. Butera A, Sanchez M, Pronio A, Amendola A, De Nitto D, Di Carlo N, Lande R, Frasca L, Borrini F, Pica R, Boirivant M. CD3+CD4+LAP+Foxp3-regulatory cells of the colonic lamina propria limit disease extension in ulcerative colitis. Front Immunol. 2018;9:2511.

    PubMed  PubMed Central  Google Scholar 

  135. Bamias G, et al. Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology. 2005;128(3):654–66.

    CAS  PubMed  Google Scholar 

  136. Dohi T, et al. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology. 2003;124(3):672–82.

    CAS  PubMed  Google Scholar 

  137. Kotlarz D, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55.

    CAS  PubMed  Google Scholar 

  138. Moran CJ, et al. IL-10R polymorphisms are associated with very-early-onset ulcerative colitis. Inflamm Bowel Dis. 2013;19(1):115–23.

    PubMed  Google Scholar 

  139. Kotlarz D, Beier R, Murugan D, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55. https://doi.org/10.1053/j.gastro.2012.04.045.

    Article  CAS  PubMed  Google Scholar 

  140. Sonnenberg GF, Fouser LA, Artis D. Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol. 2010;107:1–29.

    CAS  PubMed  Google Scholar 

  141. Mizoguchi A. Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis. 2012;18(9):1777–84.

    PubMed  Google Scholar 

  142. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383–90.

    CAS  PubMed  Google Scholar 

  143. Wolk K, et al. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol. 2002;168(11):5397–402.

    CAS  PubMed  Google Scholar 

  144. Pickert G, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med. 2009;206(7):1465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Longman RS, et al. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211(8):1571–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Chung Y, et al. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. 2006;16(11):902–7.

    CAS  PubMed  Google Scholar 

  147. Duhen T, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10(8):857–63.

    CAS  PubMed  Google Scholar 

  148. Sugimoto K, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008;118(2):534–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wilson MS, et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol. 2010;184(8):4378–90.

    CAS  PubMed  Google Scholar 

  150. Muhl H, Bachmann M. IL-18/IL-18BP and IL-22/IL-22BP: two interrelated couples with therapeutic potential. Cell Sig. 2019;63:109388.

    Google Scholar 

  151. Zwiers A, et al. Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;188(4):1573–7.

    CAS  PubMed  Google Scholar 

  152. Silverberg MS, et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet. 2009;41(2):216–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Keir M, Yi T, Timothy L, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med. 2020;217(3):e20192195. https://doi.org/10.1084/jem.20192195.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan J. Fuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Zoeten, E.F., Fuss, I.J. (2023). Cytokines and Inflammatory Bowel Disease. In: Mamula, P., Kelsen, J.R., Grossman, A.B., Baldassano, R.N., Markowitz, J.E. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-14744-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14744-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14743-2

  • Online ISBN: 978-3-031-14744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics