Skip to main content

Immunologic Regulation of Health and Inflammation in the Intestine

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease
  • 697 Accesses

Abstract

A majority of the human immune system is found in close association with the gastrointestinal tract and is organized in dense complex structures that encompass numerous sophisticated cellular interactions. A properly functioning mucosal immune system is necessary to protect from pathogen entry or colonization, while also establishing tolerance to dietary stimuli or the trillions of normally beneficial microbes that inhabit the intestine, termed the microbiota. This involves a balancing act and many regulatory pathways, which if disrupted, results in chronic overactivation of the mucosal immune system and is a defining feature of inflammatory bowel disease (IBD). In this chapter, we review our current understanding of how the mucosal immune system orchestrates states of health and inflammation in the mammalian gastrointestinal tract, building off of knowledge obtained from basic pre-clinical models and translational patient-based studies. Further, we discuss unique features of mucosal immunity in children and fundamental gaps in knowledge surrounding our understanding of the immune response in the pathogenesis of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9:577–89. https://doi.org/10.1038/nrgastro.2012.156.

    Article  CAS  PubMed  Google Scholar 

  2. Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80. https://doi.org/10.1146/annurev-med-012510-175505.

    Article  CAS  PubMed  Google Scholar 

  3. Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49:681–9. https://doi.org/10.3109/00365521.2014.898326.

    Article  PubMed  Google Scholar 

  4. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95:6578–83. https://doi.org/10.1073/pnas.95.12.6578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59–69. https://doi.org/10.1016/j.smim.2006.10.002.

    Article  CAS  PubMed  Google Scholar 

  6. Johansson ME, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16:639–49. https://doi.org/10.1038/nri.2016.88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaishnava S, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334:255–8. https://doi.org/10.1126/science.1209791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity. 2015;42:28–39. https://doi.org/10.1016/j.immuni.2014.12.028.

    Article  CAS  PubMed  Google Scholar 

  9. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474:298–306. https://doi.org/10.1038/nature10208.

    Article  CAS  PubMed  Google Scholar 

  10. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34. https://doi.org/10.1038/nature06005.

    Article  CAS  PubMed  Google Scholar 

  11. Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol. 2010;8:564–77. https://doi.org/10.1038/nrmicro2403.

    Article  CAS  PubMed  Google Scholar 

  12. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73. https://doi.org/10.1126/science.1223490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geuking MB, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34:794–806. https://doi.org/10.1016/j.immuni.2011.03.021.

    Article  CAS  PubMed  Google Scholar 

  14. Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol. 2004;12:129–34. https://doi.org/10.1016/j.tim.2004.01.001.

    Article  CAS  PubMed  Google Scholar 

  15. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23. https://doi.org/10.1038/nri2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18. https://doi.org/10.1016/j.cell.2005.05.007.

    Article  CAS  PubMed  Google Scholar 

  17. Ivanov II, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–49. https://doi.org/10.1016/j.chom.2008.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaboriau-Routhiau V, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31:677–89. https://doi.org/10.1016/j.immuni.2009.08.020.

    Article  CAS  PubMed  Google Scholar 

  19. Atarashi K, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41. https://doi.org/10.1126/science.1198469.

    Article  CAS  PubMed  Google Scholar 

  20. Fung TC, Artis D, Sonnenberg GF. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev. 2014;260:35–49. https://doi.org/10.1111/imr.12186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim M, et al. Critical role for the microbiota in CX. Immunity. 2018;49:151–163.e155. https://doi.org/10.1016/j.immuni.2018.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stefka AT, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014;111:13145–50. https://doi.org/10.1073/pnas.1412008111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621. https://doi.org/10.1146/annurev-immunol-030409-101225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–40. https://doi.org/10.1016/S0140-6736(07)60750-8.

    Article  CAS  PubMed  Google Scholar 

  25. Rosen MJ, Dhawan A, Saeed SA. Inflammatory bowel disease in children and adolescents. JAMA Pediatr. 2015;169:1053–60. https://doi.org/10.1001/jamapediatrics.2015.1982.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Muise AM, Snapper SB, Kugathasan S. The age of gene discovery in very early onset inflammatory bowel disease. Gastroenterology. 2012;143:285–8. https://doi.org/10.1053/j.gastro.2012.06.025.

    Article  PubMed  Google Scholar 

  27. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17. https://doi.org/10.1038/nature10209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85. https://doi.org/10.1038/nri3738.

    Article  CAS  PubMed  Google Scholar 

  29. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16:351–80. https://doi.org/10.1002/bdd.2510160502.

    Article  CAS  PubMed  Google Scholar 

  30. Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn. 2011;240:501–20. https://doi.org/10.1002/dvdy.22540.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 2006;7:349–59. https://doi.org/10.1038/nrg1840.

    Article  CAS  PubMed  Google Scholar 

  32. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60. https://doi.org/10.1146/annurev.physiol.010908.163145.

    Article  CAS  PubMed  Google Scholar 

  33. Snoeck V, Goddeeris B, Cox E. The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes Infect. 2005;7:997–1004. https://doi.org/10.1016/j.micinf.2005.04.003.

    Article  CAS  PubMed  Google Scholar 

  34. Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8:712–9. https://doi.org/10.1038/mi.2015.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gribble FM, Reimann F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016;78:277–99. https://doi.org/10.1146/annurev-physiol-021115-105439.

    Article  CAS  PubMed  Google Scholar 

  36. Adolph TE, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503:272–6. https://doi.org/10.1038/nature12599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. 2010;26:547–53. https://doi.org/10.1097/MOG.0b013e32833dccde.

    Article  PubMed  Google Scholar 

  38. Ohno H. Intestinal M cells. J Biochem. 2016;159:151–60. https://doi.org/10.1093/jb/mvv121.

    Article  CAS  PubMed  Google Scholar 

  39. Sakhon OS, et al. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue Barriers. 2015;3:e1004975. https://doi.org/10.1080/21688370.2015.1004975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johansson ME, et al. Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci. 2011;68:3635–41. https://doi.org/10.1007/s00018-011-0822-3.

    Article  CAS  PubMed  Google Scholar 

  41. Johansson ME, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A. 2008;105:15064–9. https://doi.org/10.1073/pnas.0803124105.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rescigno M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 2011;32:256–64. https://doi.org/10.1016/j.it.2011.04.003.

    Article  CAS  PubMed  Google Scholar 

  43. Zaph C, et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature. 2007;446:552–6. https://doi.org/10.1038/nature05590.

    Article  CAS  PubMed  Google Scholar 

  44. Yu S, Gao N. Compartmentalizing intestinal epithelial cell toll-like receptors for immune surveillance. Cell Mol Life Sci. 2015;72:3343–53. https://doi.org/10.1007/s00018-015-1931-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ortega-Cava CF, et al. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol. 2003;170:3977–85. https://doi.org/10.4049/jimmunol.170.8.3977.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, et al. Regional mucosa-associated microbiota determine physiological expression of TLR2 and TLR4 in murine colon. PLoS One. 2010;5:e13607. https://doi.org/10.1371/journal.pone.0013607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–44. https://doi.org/10.1038/nri2707.

    Article  CAS  PubMed  Google Scholar 

  48. Lotz M, et al. Cytokine-mediated control of lipopolysaccharide-induced activation of small intestinal epithelial cells. Immunology. 2007;122:306–15. https://doi.org/10.1111/j.1365-2567.2007.02639.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schlee M, et al. Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun. 2007;75:2399–407. https://doi.org/10.1128/IAI.01563-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitajima S, Morimoto M, Sagara E, Shimizu C, Ikeda Y. Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. Exp Anim. 2001;50:387–95. https://doi.org/10.1538/expanim.50.387.

    Article  CAS  PubMed  Google Scholar 

  51. Johansson ME, et al. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS One. 2010;5:e12238. https://doi.org/10.1371/journal.pone.0012238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41. https://doi.org/10.1016/j.cell.2004.07.002.

    Article  CAS  PubMed  Google Scholar 

  53. Gupta N, Martin PM, Prasad PD, Ganapathy V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci. 2006;78:2419–25. https://doi.org/10.1016/j.lfs.2005.10.028.

    Article  CAS  PubMed  Google Scholar 

  54. Borthakur A, et al. Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level. Am J Physiol Gastrointest Liver Physiol. 2006;290:G30–5. https://doi.org/10.1152/ajpgi.00302.2005.

    Article  CAS  PubMed  Google Scholar 

  55. Kelly D, et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol. 2004;5:104–12. https://doi.org/10.1038/ni1018.

    Article  CAS  PubMed  Google Scholar 

  56. Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50. https://doi.org/10.1038/nature12721.

    Article  CAS  PubMed  Google Scholar 

  58. Kelly CJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–71. https://doi.org/10.1016/j.chom.2015.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Byndloss MX, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357:570–5. https://doi.org/10.1126/science.aam9949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barrett JC, et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet. 2009;41:1330–4. https://doi.org/10.1038/ng.483.

    Article  CAS  PubMed  Google Scholar 

  61. Banerjee S, et al. MEP1A allele for meprin A metalloprotease is a susceptibility gene for inflammatory bowel disease. Mucosal Immunol. 2009;2:220–31. https://doi.org/10.1038/mi.2009.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ogura Y, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6. https://doi.org/10.1038/35079114.

    Article  CAS  PubMed  Google Scholar 

  63. Inohara N, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem. 2003;278:5509–12. https://doi.org/10.1074/jbc.C200673200.

    Article  CAS  PubMed  Google Scholar 

  64. Bischoff SC, et al. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. https://doi.org/10.1186/s12876-014-0189-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Di Sabatino A, et al. Increased enterocyte apoptosis in inflamed areas of Crohn’s disease. Dis Colon Rectum. 2003;46:1498–507. https://doi.org/10.1007/s10350-004-6802-z.

    Article  PubMed  Google Scholar 

  66. Günther C, Neumann H, Neurath MF, Becker C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut. 2013;62:1062–71. https://doi.org/10.1136/gutjnl-2011-301364.

    Article  CAS  PubMed  Google Scholar 

  67. Hagiwara C, Tanaka M, Kudo H. Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J Gastroenterol Hepatol. 2002;17:758–64. https://doi.org/10.1046/j.1440-1746.2002.02791.x.

    Article  PubMed  Google Scholar 

  68. Rescigno M, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2:361–7. https://doi.org/10.1038/86373.

    Article  CAS  PubMed  Google Scholar 

  69. Chieppa M, Rescigno M, Huang AY, Germain RN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med. 2006;203:2841–52. https://doi.org/10.1084/jem.20061884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6:666–77. https://doi.org/10.1038/mi.2013.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cornes JS. Number, size, and distribution of Peyer’s patches in the human small intestine: part I the development of Peyer's patches. Gut. 1965;6:225–9. https://doi.org/10.1136/gut.6.3.225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Masahata K, et al. Generation of colonic IgA-secreting cells in the caecal patch. Nat Commun. 2014;5:3704. https://doi.org/10.1038/ncomms4704.

    Article  CAS  PubMed  Google Scholar 

  73. Lee AY, et al. Dendritic cells in colonic patches and iliac lymph nodes are essential in mucosal IgA induction following intrarectal administration via CCR7 interaction. Eur J Immunol. 2008;38:1127–37. https://doi.org/10.1002/eji.200737442.

    Article  CAS  PubMed  Google Scholar 

  74. Tsuji M, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity. 2008;29:261–71. https://doi.org/10.1016/j.immuni.2008.05.014.

    Article  CAS  PubMed  Google Scholar 

  75. Pabst O, et al. Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur J Immunol. 2005;35:98–107. https://doi.org/10.1002/eji.200425432.

    Article  CAS  PubMed  Google Scholar 

  76. Trepel F. Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr. 1974;52:511–5. https://doi.org/10.1007/BF01468720.

    Article  CAS  PubMed  Google Scholar 

  77. Baptista AP, et al. Colonic patch and colonic SILT development are independent and differentially regulated events. Mucosal Immunol. 2013;6:511–21. https://doi.org/10.1038/mi.2012.90.

    Article  CAS  PubMed  Google Scholar 

  78. Kanamori Y, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med. 1996;184:1449–59. https://doi.org/10.1084/jem.184.4.1449.

    Article  CAS  PubMed  Google Scholar 

  79. Velaga S, et al. Chemokine receptor CXCR5 supports solitary intestinal lymphoid tissue formation, B cell homing, and induction of intestinal IgA responses. J Immunol. 2009;182:2610–9. https://doi.org/10.4049/jimmunol.0801141.

    Article  CAS  PubMed  Google Scholar 

  80. McDonald KG, McDonough JS, Dieckgraefe BK, Newberry RD. Dendritic cells produce CXCL13 and participate in the development of murine small intestine lymphoid tissues. Am J Pathol. 2010;176:2367–77. https://doi.org/10.2353/ajpath.2010.090723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Knoop KA, Butler BR, Kumar N, Newberry RD, Williams IR. Distinct developmental requirements for isolated lymphoid follicle formation in the small and large intestine: RANKL is essential only in the small intestine. Am J Pathol. 2011;179:1861–71. https://doi.org/10.1016/j.ajpath.2011.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carter PB, Collins FM. The route of enteric infection in normal mice. J Exp Med. 1974;139:1189–203. https://doi.org/10.1084/jem.139.5.1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Van den Broeck W, Derore A, Simoens P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods. 2006;312:12–9. https://doi.org/10.1016/j.jim.2006.01.022.

    Article  CAS  PubMed  Google Scholar 

  84. Esterházy D, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126–30. https://doi.org/10.1038/s41586-019-1125-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schiavi E, Smolinska S, O’Mahony L. Intestinal dendritic cells. Curr Opin Gastroenterol. 2015;31:98–103. https://doi.org/10.1097/MOG.0000000000000155.

    Article  CAS  PubMed  Google Scholar 

  86. Schulz O, Pabst O. Antigen sampling in the small intestine. Trends Immunol. 2013;34:155–61. https://doi.org/10.1016/j.it.2012.09.006.

    Article  CAS  PubMed  Google Scholar 

  87. McDole JR, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483:345–9. https://doi.org/10.1038/nature10863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maldonado-López R, et al. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med. 1999;189:587–92. https://doi.org/10.1084/jem.189.3.587.

    Article  PubMed  PubMed Central  Google Scholar 

  89. del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Förster R. Development and functional specialization of CD103+ dendritic cells. Immunol Rev. 2010;234:268–81. https://doi.org/10.1111/j.0105-2896.2009.00874.x.

    Article  PubMed  Google Scholar 

  90. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604. https://doi.org/10.1146/annurev-immunol-020711-074950.

    Article  CAS  PubMed  Google Scholar 

  91. Muzaki AR, et al. Intestinal CD103(+)CD11b(−) dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells. Mucosal Immunol. 2016;9:336–51. https://doi.org/10.1038/mi.2015.64.

    Article  CAS  PubMed  Google Scholar 

  92. Zeng R, et al. Retinoic acid regulates the development of a gut-homing precursor for intestinal dendritic cells. Mucosal Immunol. 2013;6:847–56. https://doi.org/10.1038/mi.2012.123.

    Article  CAS  PubMed  Google Scholar 

  93. Rescigno M, Di Sabatino A. Dendritic cells in intestinal homeostasis and disease. J Clin Invest. 2009;119:2441–50. https://doi.org/10.1172/JCI39134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qualls JE, Tuna H, Kaplan AM, Cohen DA. Suppression of experimental colitis in mice by CD11c+ dendritic cells. Inflamm Bowel Dis. 2009;15:236–47. https://doi.org/10.1002/ibd.20733.

    Article  PubMed  Google Scholar 

  95. Ramalingam R, et al. Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J Immunol. 2012;189:3878–93. https://doi.org/10.4049/jimmunol.1201029.

    Article  CAS  PubMed  Google Scholar 

  96. Hart AL, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005;129:50–65. https://doi.org/10.1053/j.gastro.2005.05.013.

    Article  CAS  PubMed  Google Scholar 

  97. Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol. 2017;198:1387–94. https://doi.org/10.4049/jimmunol.1601520.

    Article  CAS  PubMed  Google Scholar 

  98. Bain CC, Mowat AM. Macrophages in intestinal homeostasis and inflammation. Immunol Rev. 2014;260:102–17. https://doi.org/10.1111/imr.12192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140:859–70. https://doi.org/10.1016/j.cell.2010.01.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2000;6:21–33. https://doi.org/10.1097/00054725-200002000-00004.

    Article  CAS  PubMed  Google Scholar 

  101. Yona S, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91. https://doi.org/10.1016/j.immuni.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  102. Mowat AM. To respond or not to respond – a personal perspective of intestinal tolerance. Nat Rev Immunol. 2018;18:405–15. https://doi.org/10.1038/s41577-018-0002-x.

    Article  CAS  PubMed  Google Scholar 

  103. Rugtveit J, Bakka A, Brandtzaeg P. Differential distribution of B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol. 1997;110:104–13. https://doi.org/10.1046/j.1365-2249.1997.5071404.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schenk M, Bouchon A, Seibold F, Mueller C. TREM-1–expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest. 2007;117:3097–106. https://doi.org/10.1172/JCI30602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343:37–49. https://doi.org/10.1056/NEJM200007063430107.

    Article  CAS  PubMed  Google Scholar 

  106. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Segal AW, Ensell J, Munro JM, Sarner M. Indium-111 tagged leucocytes in the diagnosis of inflammatory bowel disease. Lancet. 1981;2:230–2. https://doi.org/10.1016/s0140-6736(81)90477-3.

    Article  CAS  PubMed  Google Scholar 

  108. Røseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol. 1999;34:50–4. https://doi.org/10.1080/00365529950172835.

    Article  PubMed  Google Scholar 

  109. Ostanin DV, et al. Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. J Immunol. 2012;188:1491–502. https://doi.org/10.4049/jimmunol.1102296.

    Article  CAS  PubMed  Google Scholar 

  110. Jamieson T, et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest. 2012;122:3127–44. https://doi.org/10.1172/JCI61067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wéra O, Lancellotti P, Oury C. The dual role of neutrophils in inflammatory bowel diseases. J Clin Med. 2016;5 https://doi.org/10.3390/jcm5120118.

  112. Dieckgraefe BK, Korzenik JR. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet. 2002;360:1478–80. https://doi.org/10.1016/S0140-6736(02)11437-1.

    Article  PubMed  Google Scholar 

  113. Korzenik JR, et al. Sargramostim for active Crohn’s disease. N Engl J Med. 2005;352:2193–201. https://doi.org/10.1056/NEJMoa041109.

    Article  CAS  PubMed  Google Scholar 

  114. Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol. 2013;8:477–512. https://doi.org/10.1146/annurev-pathol-011110-130318.

    Article  CAS  PubMed  Google Scholar 

  115. Chen ML, Sundrud MS. Cytokine networks and T-cell subsets in inflammatory bowel diseases. Inflamm Bowel Dis. 2016;22:1157–67. https://doi.org/10.1097/MIB.0000000000000714.

    Article  PubMed  Google Scholar 

  116. Fuss IJ, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157:1261–70.

    Article  CAS  PubMed  Google Scholar 

  117. Mora JR, et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature. 2003;424:88–93. https://doi.org/10.1038/nature01726.

    Article  CAS  PubMed  Google Scholar 

  118. Strober W. Immunology. Unraveling gut inflammation. Science. 2006;313:1052–4. https://doi.org/10.1126/science.1131997.

    Article  CAS  PubMed  Google Scholar 

  119. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity. 2002;17:629–38. https://doi.org/10.1016/s1074-7613(02)00453-3.

    Article  CAS  PubMed  Google Scholar 

  120. Ahern PP, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279–88. https://doi.org/10.1016/j.immuni.2010.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. O’Connor W, et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol. 2009;10:603–9. https://doi.org/10.1038/ni.1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang XO, et al. Regulation of inflammatory responses by IL-17F. J Exp Med. 2008;205:1063–75. https://doi.org/10.1084/jem.20071978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hueber W, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700. https://doi.org/10.1136/gutjnl-2011-301668.

    Article  CAS  PubMed  Google Scholar 

  124. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity. 2008;28:468–76. https://doi.org/10.1016/j.immuni.2008.03.003.

    Article  CAS  PubMed  Google Scholar 

  125. Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302. https://doi.org/10.1084/jem.192.2.295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64. https://doi.org/10.1146/annurev.immunol.25.022106.141623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fantini MC, et al. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology. 2009;136(1308–1316):e1301–3. https://doi.org/10.1053/j.gastro.2008.12.053.

    Article  CAS  Google Scholar 

  128. Blanco Quirós A, Arranz Sanz E, Bernardo Ordiz D, Garrote Adrados JA. From autoimmune enteropathy to the IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) syndrome. Allergol Immunopathol (Madr). 2009;37:208–15. https://doi.org/10.1016/j.aller.2009.04.002.

    Article  PubMed  Google Scholar 

  129. Martin JC, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019;178:1493–1508.e1420. https://doi.org/10.1016/j.cell.2019.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology. 2011;140:957–65. https://doi.org/10.1053/j.gastro.2010.12.002.

    Article  CAS  PubMed  Google Scholar 

  131. Wolf HM, et al. Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) in human monocytes. Blood. 1994;83:1278–88.

    Article  CAS  PubMed  Google Scholar 

  132. Wolf HM, et al. Inhibition of receptor-dependent and receptor-independent generation of the respiratory burst in human neutrophils and monocytes by human serum IgA. Pediatr Res. 1994;36:235–43. https://doi.org/10.1203/00006450-199408000-00016.

    Article  CAS  PubMed  Google Scholar 

  133. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3:944–50. https://doi.org/10.1038/ni833.

    Article  CAS  PubMed  Google Scholar 

  134. Benveniste J, Lespinats G, Salomon J. Serum and secretory IgA in axenic and holoxenic mice. J Immunol. 1971;107:1656–62.

    Article  CAS  PubMed  Google Scholar 

  135. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1:11–22. https://doi.org/10.1038/mi.2007.6.

    Article  CAS  PubMed  Google Scholar 

  136. Braathen R, Hohman VS, Brandtzaeg P, Johansen FE. Secretory antibody formation: conserved binding interactions between J chain and polymeric Ig receptor from humans and amphibians. J Immunol. 2007;178:1589–97. https://doi.org/10.4049/jimmunol.178.3.1589.

    Article  CAS  PubMed  Google Scholar 

  137. Brandtzaeg P, Carlsen HS, Halstensen TS. The B-cell system in inflammatory bowel disease. Adv Exp Med Biol. 2006;579:149–67. https://doi.org/10.1007/0-387-33778-4_10.

    Article  CAS  PubMed  Google Scholar 

  138. Singh K, Chang C, Gershwin ME. IgA deficiency and autoimmunity. Autoimmun Rev. 2014;13:163–77. https://doi.org/10.1016/j.autrev.2013.10.005.

    Article  CAS  PubMed  Google Scholar 

  139. Thoree VC, et al. Related IgA1 and IgG producing cells in blood and diseased mucosa in ulcerative colitis. Gut. 2002;51:44–50. https://doi.org/10.1136/gut.51.1.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Halstensen TS, Mollnes TE, Garred P, Fausa O, Brandtzaeg P. Epithelial deposition of immunoglobulin G1 and activated complement (C3b and terminal complement complex) in ulcerative colitis. Gastroenterology. 1990;98:1264–71. https://doi.org/10.1016/0016-5085(90)90343-y.

    Article  CAS  PubMed  Google Scholar 

  141. Macpherson AJ, Uhr T. Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann N Y Acad Sci. 2004;1029:36–43. https://doi.org/10.1196/annals.1309.005.

    Article  CAS  PubMed  Google Scholar 

  142. Dubinsky MC, et al. Serum immune responses predict rapid disease progression among children with Crohn's disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–7. https://doi.org/10.1111/j.1572-0241.2006.00456.x.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74. https://doi.org/10.1016/0092-8674(93)80068-p.

    Article  PubMed  Google Scholar 

  144. Mombaerts P, et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 1993;75:274–82. https://doi.org/10.1016/0092-8674(93)80069-q.

    Article  CAS  PubMed  Google Scholar 

  145. Sadlack B, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75:253–61. https://doi.org/10.1016/0092-8674(93)80067-o.

    Article  CAS  PubMed  Google Scholar 

  146. Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol. 1993;11:165–90. https://doi.org/10.1146/annurev.iy.11.040193.001121.

    Article  CAS  PubMed  Google Scholar 

  147. Davidson NJ, et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med. 1996;184:241–51. https://doi.org/10.1084/jem.184.1.241.

    Article  CAS  PubMed  Google Scholar 

  148. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109. https://doi.org/10.1146/annurev-immunol-031210-101312.

    Article  CAS  PubMed  Google Scholar 

  149. Rubtsov YP, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28:546–58. https://doi.org/10.1016/j.immuni.2008.02.017.

    Article  CAS  PubMed  Google Scholar 

  150. Chaudhry A, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34:566–78. https://doi.org/10.1016/j.immuni.2011.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Huber S, et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3− and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity. 2011;34:554–65. https://doi.org/10.1016/j.immuni.2011.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513–9. https://doi.org/10.1126/science.aal3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Willerford DM, et al. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995;3:521–30. https://doi.org/10.1016/1074-7613(95)90180-9.

    Article  CAS  PubMed  Google Scholar 

  154. Ma A, Datta M, Margosian E, Chen J, Horak I. T cells, but not B cells, are required for bowel inflammation in interleukin 2-deficient mice. J Exp Med. 1995;182:1567–72. https://doi.org/10.1084/jem.182.5.1567.

    Article  CAS  PubMed  Google Scholar 

  155. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12:180–90. https://doi.org/10.1038/nri3156.

    Article  CAS  PubMed  Google Scholar 

  156. Chinen T, et al. An essential role for the IL-2 receptor in T. Nat Immunol. 2016;17:1322–33. https://doi.org/10.1038/ni.3540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev. 2011;241:63–76. https://doi.org/10.1111/j.1600-065X.2011.01004.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhou L, et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019;568:405–9. https://doi.org/10.1038/s41586-019-1082-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Loschko J, et al. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. J Exp Med. 2016;213:517–34. https://doi.org/10.1084/jem.20160062.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhou W, Zhou L, Zhou J, JRI Live Cell Bank, Chu C, Zhang C, Sockolow RE, Eberl G, Sonnenberg GF. ZBTB46 defines and regulates ILC3s that protect the intestine. Nature. 2022;609(7925):159–65. https://doi.org/10.1038/s41586-022-04934-4. Epub 2022 Jul 13. PMID: 35831503; PMCID: PMC9528687.

  161. Pigneur B, et al. Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm Bowel Dis. 2013;19:2820–8. https://doi.org/10.1097/01.MIB.0000435439.22484.d3.

    Article  PubMed  Google Scholar 

  162. Xavier RJ, Rioux JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol. 2008;8:631–43. https://doi.org/10.1038/nri2361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Salem GA, Selby GB. Stem cell transplant in inflammatory bowel disease: a promising modality of treatment for a complicated disease course. Stem Cell Investig. 2017;4:95. https://doi.org/10.21037/sci.2017.11.04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chu C, et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183. Cell Rep. 2018;23:3750–8. https://doi.org/10.1016/j.celrep.2018.05.099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sonnenberg GF, Hepworth MR. Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol. 2019;19:599–613. https://doi.org/10.1038/s41577-019-0194-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hepworth MR, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science. 2015;348:1031–5. https://doi.org/10.1126/science.aaa4812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Eberl G, et al. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol. 2004;5:64–73. https://doi.org/10.1038/ni1022.

    Article  CAS  PubMed  Google Scholar 

  168. Spits H, et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9. https://doi.org/10.1038/nri3365.

    Article  CAS  PubMed  Google Scholar 

  169. Fawkner-Corbett D, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 2021; https://doi.org/10.1016/j.cell.2020.12.016.

  170. Takayama T, et al. Imbalance of NKp44(+)NKp46(−) and NKp44(−)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology. 2010;139(882–892):892.e881–3. https://doi.org/10.1053/j.gastro.2010.05.040.

    Article  CAS  Google Scholar 

  171. Bernink JH, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14:221–9. https://doi.org/10.1038/ni.2534.

    Article  CAS  PubMed  Google Scholar 

  172. Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity. 2012;37:601–10. https://doi.org/10.1016/j.immuni.2012.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mortha A, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288. https://doi.org/10.1126/science.1249288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pham TA, et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe. 2014;16:504–16. https://doi.org/10.1016/j.chom.2014.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zheng Y, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14:282–9. https://doi.org/10.1038/nm1720.

    Article  CAS  PubMed  Google Scholar 

  176. Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity. 2011;34:122–34. https://doi.org/10.1016/j.immuni.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  177. Kruglov AA, et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science. 2013;342:1243–6. https://doi.org/10.1126/science.1243364.

    Article  CAS  PubMed  Google Scholar 

  178. Lyu M, Suzuki H, Kang L, Gaspal F, Zhou W, Goc J, Zhou L, Zhou J, Zhang W, JRI Live Cell Bank, Shen Z, Fox JG, Sockolow RE, Laufer TM, Fan Y, Eberl G, Withers DR, Sonnenberg GF. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature. 2022;610(7933):744–51. https://doi.org/10.1038/s41586-022-05141-x. Epub 2022 Sep 7. PMID: 36071169; PMCID: PMC9613541.

  179. Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R, Mantegazza AR, Ma HL, Crawford A, Angelosanto JM, Wherry EJ, Koni PA, Bushman FD, Elson CO, Eberl G, Artis D, Sonnenberg GF. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113–7. https://doi.org/10.1038/nature12240. Epub 2013 May 22. PMID: 23698371; PMCID: PMC3699860.

  180. Glocker EO, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45. https://doi.org/10.1056/NEJMoa0907206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A. 1997;94:3168–71. https://doi.org/10.1073/pnas.94.7.3168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Benchimol EI, et al. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology. 2014;147:803–13.e807.; quiz e814–805. https://doi.org/10.1053/j.gastro.2014.06.023.

  183. Cho JH, Feldman M. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat Med. 2015;21:730–8. https://doi.org/10.1038/nm.3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen Z, et al. CTLA4-1661A/G and 3'UTR long repeat polymorphisms are associated with ulcerative colitis and influence CTLA4 mRNA and protein expression. Genes Immun. 2010;11:573–83. https://doi.org/10.1038/gene.2010.16.

    Article  CAS  PubMed  Google Scholar 

  185. Duerr RH, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3. https://doi.org/10.1126/science.1135245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14:269–78. https://doi.org/10.1038/nrgastro.2016.208.

    Article  CAS  PubMed  Google Scholar 

  187. Havrdová E, et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J Neurol. 2016;263:1287–95. https://doi.org/10.1007/s00415-016-8128-x.

    Article  CAS  PubMed  Google Scholar 

  188. Sands BE, et al. Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2019;381:1201–14. https://doi.org/10.1056/NEJMoa1900750.

    Article  CAS  PubMed  Google Scholar 

  189. Sedda S, Bevivino G, Monteleone G. Targeting IL-23 in Crohn’s disease. Expert Rev Clin Immunol. 2018;14:907–13. https://doi.org/10.1080/1744666X.2018.1524754.

    Article  CAS  PubMed  Google Scholar 

  190. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15:283–94. https://doi.org/10.1038/nri3823.

    Article  CAS  PubMed  Google Scholar 

  191. Rubino SJ, Selvanantham T, Girardin SE, Philpott DJ. Nod-like receptors in the control of intestinal inflammation. Curr Opin Immunol. 2012;24:398–404. https://doi.org/10.1016/j.coi.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  192. Kelsen JR, Baldassano RN, Artis D, Sonnenberg GF. Maintaining intestinal health: the genetics and immunology of very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 2015;1:462–76. https://doi.org/10.1016/j.jcmgh.2015.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73. https://doi.org/10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  194. Al Nabhani Z, et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity. 2019;50:1276–88.e1275. https://doi.org/10.1016/j.immuni.2019.02.014.

  195. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010;105:2687–92. https://doi.org/10.1038/ajg.2010.398.

    Article  PubMed  Google Scholar 

  196. Feagan BG, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369:699–710. https://doi.org/10.1056/NEJMoa1215734.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory F. Sonnenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, A., Sonnenberg, G.F. (2023). Immunologic Regulation of Health and Inflammation in the Intestine. In: Mamula, P., Kelsen, J.R., Grossman, A.B., Baldassano, R.N., Markowitz, J.E. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-14744-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14744-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14743-2

  • Online ISBN: 978-3-031-14744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics