Skip to main content

Growth Impairment in Pediatric Inflammatory Bowel Disease

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease
  • 680 Accesses

Abstract

The clinical course and severity of inflammatory bowel disease (IBD) vary widely in children and in adults. Unique to pediatric patient populations, however, is the potential for linear growth impairment as a complication of chronic intestinal inflammation. The challenge in treating each child or adolescent is to employ pharmacologic, nutritional, and where appropriate surgical interventions, to not only decrease mucosal inflammation and thereby alleviate symptoms but also to optimize growth and normalize associated pubertal and social development. Indeed, normal growth is a marker of therapeutic success. This chapter reviews the prevalence of growth impairment in pediatric IBD, discusses its pathophysiology, and outlines strategies for its prevention and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CIDsCaNN: Canadian Children Inflammatory Bowel Disease Network

References

  1. Griffiths AM, Nguyen P, Smith C, MacMillan JH, Sherman PM. Growth and clinical course of children with Crohn’s disease. Gut. 1993;34:939–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hyams JS, Davis P, Grancher K, Lerer T, Justinich CJ, Markowitz J. Clinical outcome of ulcerative colitis in children. J Pediatr. 1996;129:81–8.

    CAS  PubMed  Google Scholar 

  3. Karlberg J, Jalil F, Lam B, Low L, Yeung CY. Linear growth retardation in relation to the three phases of growth. Eur J Clin Nutr. 1994;48(Suppl. 1):S25–43. discussion S-4

    PubMed  Google Scholar 

  4. Rogol AD, Roemmich JN, Clark PA. Growth at puberty. J Adolesc Health. 2002;31:192–200.

    PubMed  Google Scholar 

  5. Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366:443–53.

    CAS  PubMed  Google Scholar 

  6. Salmon WD Jr, Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. 1956. J Lab Clin Med. 1990;116:408–19.

    PubMed  Google Scholar 

  7. Daughaday WH. A personal history of the origin of the somatomedin hypothesis and recent challenges to its validity. Perspect Biol Med. 1989;32:194–211.

    CAS  PubMed  Google Scholar 

  8. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978;253:2769–76.

    CAS  PubMed  Google Scholar 

  9. Isaksson OG, Jansson JO, Gause IA. Growth hormone stimulates longitudinal bone growth directly. Science. 1982;216:1237–9.

    CAS  PubMed  Google Scholar 

  10. Isaksson OG, Lindahl A, Nilsson A, Isgaard J. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocr Rev. 1987;8:426–38.

    CAS  PubMed  Google Scholar 

  11. Green H, Morikawa M, Nixon T. A dual effector theory of growth-hormone action. Differentiation. 1985;29:195–8.

    CAS  PubMed  Google Scholar 

  12. Frank SJ, Messina JL, Baumann G, Black RA, Bertics PJ. Insights into modulation of (and by) growth hormone signaling. J Lab Clin Med. 2000;136:14–20.

    CAS  PubMed  Google Scholar 

  13. Teglund S, McKay C, Schuetz E, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–50.

    CAS  PubMed  Google Scholar 

  14. Bergad PL, Schwarzenberg SJ, Humbert JT, et al. Inhibition of growth hormone action in models of inflammation. Am J Physiol Cell Physiol. 2000;279:C1906–17.

    CAS  PubMed  Google Scholar 

  15. Denson LA, Held MA, Menon RK, Frank SJ, Parlow AF, Arnold DL. Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3. Am J Physiol Gastrointest Liver Physiol. 2003;284:G646–54.

    CAS  PubMed  Google Scholar 

  16. Ram PA, Waxman DJ. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem. 1999;274:35553–61.

    CAS  PubMed  Google Scholar 

  17. Asplin CM, Faria AC, Carlsen EC, et al. Alterations in the pulsatile mode of growth hormone release in men and women with insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1989;69:239–45.

    CAS  PubMed  Google Scholar 

  18. Herrington J, Smit LS, Schwartz J, Carter-Su C. The role of STAT proteins in growth hormone signaling. Oncogene. 2000;19:2585–97.

    CAS  Google Scholar 

  19. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci U S A. 1995;92:8831–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34.

    CAS  PubMed  Google Scholar 

  21. Govoni KE, Baylink DJ, Mohan S. The multi-functional role of insulin-like growth factor binding proteins in bone. Pediatr Nephrol. 2005;20:261–8.

    PubMed  Google Scholar 

  22. Rechler MM. Insulin-like growth factor binding proteins. Vitam Horm. 1993;47:1–114.

    CAS  PubMed  Google Scholar 

  23. Miyakoshi N, Richman C, Qin X, Baylink DJ, Mohan S. Effects of recombinant insulin-like growth factor-binding protein-4 on bone formation parameters in mice. Endocrinology. 1999;140:5719–28.

    CAS  PubMed  Google Scholar 

  24. Rajaram S, Baylink DJ, Mohan S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev. 1997;18:801–31.

    CAS  PubMed  Google Scholar 

  25. Thissen JP, Davenport ML, Pucilowska JB, Miles MV, Underwood LE. Increased serum clearance and degradation of 125I-labeled IGF-I in protein-restricted rats. Am J Phys. 1992;262:E406–11.

    CAS  Google Scholar 

  26. Underwood LE, Thissen JP, Lemozy S, Ketelslegers JM, Clemmons DR. Hormonal and nutritional regulation of IGF-I and its binding proteins. Horm Res. 1994;42:145–51.

    CAS  PubMed  Google Scholar 

  27. Nilsson O, Baron J. Impact of growth plate senescence on catch-up growth and epiphyseal fusion. Pediatr Nephrol. 2005;20:319–22.

    PubMed  Google Scholar 

  28. Walker KV, Kember NF. Cell kinetics of growth cartilage in the rat tibia. II. Measurements during ageing. Cell Tissue Kinet. 1972;5:409–19.

    CAS  PubMed  Google Scholar 

  29. Weise M, De-Levi S, Barnes KM, Gafni RI, Abad V, Baron J. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc Natl Acad Sci U S A. 2001;98:6871–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gafni RI, Weise M, Robrecht DT, et al. Catch-up growth is associated with delayed senescence of the growth plate in rabbits. Pediatr Res. 2001;50:618–23.

    CAS  PubMed  Google Scholar 

  31. Baron J, Klein KO, Colli MJ, et al. Catch-up growth after glucocorticoid excess: a mechanism intrinsic to the growth plate. Endocrinology. 1994;135:1367–71.

    CAS  PubMed  Google Scholar 

  32. Wei W, Sedivy JM. Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp Cell Res. 1999;253:519–22.

    CAS  PubMed  Google Scholar 

  33. Prader A, Tanner JM, von HG. Catch-up growth following illness or starvation. An example of developmental canalization in man. J Pediatr. 1963;62:646–59.

    CAS  PubMed  Google Scholar 

  34. Cutler GB Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol. 1997;61:141–4.

    CAS  PubMed  Google Scholar 

  35. Veldhuis JD, Bowers CY. Three-peptide control of pulsatile and entropic feedback-sensitive modes of growth hormone secretion: modulation by estrogen and aromatizable androgen. J Pediatr Endocrinol Metab. 2003;16(Suppl 3):587–605.

    CAS  PubMed  Google Scholar 

  36. Keenan BS, Richards GE, Ponder SW, Dallas JS, Nagamani M, Smith ER. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. J Clin Endocrinol Metab. 1993;76:996–1001.

    CAS  PubMed  Google Scholar 

  37. Nilsson KO, Albertsson-Wikland K, Alm J, et al. Improved final height in girls with Turner’s syndrome treated with growth hormone and oxandrolone. J Clin Endocrinol Metab. 1996;81:635–40.

    CAS  PubMed  Google Scholar 

  38. Stanhope R, Buchanan CR, Fenn GC, Preece MA. Double blind placebo controlled trial of low dose oxandrolone in the treatment of boys with constitutional delay of growth and puberty. Arch Dis Child. 1988;63:501–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976;51:170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Centers for Disease Control and Prevention NCfHS. CDC growth charts: United States, http://www.cdc.gov/growthcharts/.30-5-2000.

  41. Freeman JV, Cole TJ, Chinn S, Jones PR, White EM, Preece MA. Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child. 1995;73:17–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeferino AM, Barros Filho AA, Bettiol H, Barbieri MA. Monitoring growth. J Pediatr. 2003;79(Suppl. 1):S23–32.

    Google Scholar 

  43. Tanner JM, Goldstein H, Whitehouse RH. Standards for children’s height at ages 2–9 years allowing for heights of parents. Arch Dis Child. 1970;45:755–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mason A, Malik S, Russell RK, Bishop J, McGrogan P, Ahmed SF. Impact of inflammatory bowel disease on pubertal growth. Horm Res Paediatr. 2011;76:293–9.

    Google Scholar 

  45. Kirschner BS. Growth and development in chronic inflammatory bowel disease. Acta Paediatr Scand Suppl. 1990;366:98–104. discussion 5

    CAS  PubMed  Google Scholar 

  46. Kanof ME, Lake AM, Bayless TM. Decreased height velocity in children and adolescents before the diagnosis of Crohn’s disease. Gastroenterology. 1988;95:1523–7.

    CAS  PubMed  Google Scholar 

  47. Hildebrand H, Karlberg J, Kristiansson B. Longitudinal growth in children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 1994;18:165–73.

    CAS  PubMed  Google Scholar 

  48. Markowitz J, Grancher K, Rosa J, Aiges H, Daum F. Growth failure in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 1993;16:373–80.

    CAS  PubMed  Google Scholar 

  49. Motil KJ, Grand RJ, Davis-Kraft L, Ferlic LL, Smith EO. Growth failure in children with inflammatory bowel disease: a prospective study. Gastroenterology. 1993;105:681–91.

    CAS  PubMed  Google Scholar 

  50. Kundhal P, Critch J, Hack C, Griffiths A. Clinical course and growth of children with Crohn’s disease. Can J Gastroenterol. 2002;34(7):939–43.

    Google Scholar 

  51. Sawczenko A, Sandhu BK. Presenting features of inflammatory bowel disease in Great Britain and Ireland. Arch Dis Child. 2003;88:995–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wine E, Reif SS, Leshinsky-Silver E, et al. Pediatric Crohn’s disease and growth retardation: the role of genotype, phenotype, and disease severity. Pediatrics. 2004;114:1281–6.

    PubMed  Google Scholar 

  53. Sawczenko A, Ballinger AB, Croft NM, Sanderson IR, Savage MO. Adult height in patients with early onset of Crohn’s disease. Gut. 2003;52:454–5. author reply 5

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Alemzadeh N, Rekers-Mombarg LT, Mearin ML, Wit JM, Lamers CB, van Hogezand RA. Adult height in patients with early onset of Crohn’s disease. Gut. 2002;51:26–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vasseur F, Gower-Rousseau C, Vernier-Massouille G, et al. Nutritional status and growth in pediatric Crohn’s disease: a population-based study. Am J Gastroenterol. 2010;105:1893–900.

    Google Scholar 

  56. Turunen P, Ashorn M, Auvinen A, Iltanen S, Huhtala H, Kolho KL. Long-term health outcomes in pediatric inflammatory bowel disease: a population-based study. Inflamm Bowel Dis. 2009;15:56–62.

    PubMed  Google Scholar 

  57. Lee JJ, Escher JC, Shuman MJ, et al. Final adult height of children with inflammatory bowel disease is predicted by parental height and patient minimum height Z-score. Inflamm Bowel Dis. 2010;16:1669–77.

    Google Scholar 

  58. Sawczenko A, Ballinger AB, Savage MO, Sanderson IR. Clinical features affecting final adult height in patients with pediatric-onset Crohn’s disease. Pediatrics. 2006;118:124–9.

    PubMed  Google Scholar 

  59. Mouratidou N, Malmborg P, Sachs MC, et al. Adult height in patients with childhood-onset inflammatory bowel disease: a nationwide population-based cohort study. Aliment Pharmacol Ther. 2020;51:789–800.

    PubMed  Google Scholar 

  60. Gupta N, Lustig RH, Kohn MA, McCracken M, Vittinghoff E. Sex differences in statural growth impairment in Crohn’s disease: role of IGF-1. Inflamm Bowel Dis. 2011;17:2318–25.

    Google Scholar 

  61. Sentongo TA, Semeao EJ, Piccoli DA, Stallings VA, Zemel BS. Growth, body composition, and nutritional status in children and adolescents with Crohn’s disease. J Pediatr Gastroenterol Nutr. 2000;31:33–40.

    CAS  PubMed  Google Scholar 

  62. Pigneur B, Seksik P, Viola S, et al. Natural history of Crohn’s disease: comparison between childhood- and adult-onset disease. Inflamm Bowel Dis. 2010;16:953–61.

    Google Scholar 

  63. Gupta N, Bostrom AG, Kirschner BS, et al. Gender differences in presentation and course of disease in pediatric patients with Crohn disease. Pediatrics. 2007;120:e1418–25.

    PubMed  Google Scholar 

  64. Shono T, Kato M, Aoyagi Y, et al. Assessment of Growth Disturbance in Japanese Children with IBD. Int J Pediatr;2010:958915.

    Google Scholar 

  65. Kim BJ, Song SM, Kim KM, et al. Characteristics and trends in the incidence of inflammatory bowel disease in Korean children: a single-center experience. Dig Dis Sci. 2010;55:1989–95.

    Google Scholar 

  66. Dhaliwal J, Walters TD, Mack DR, et al. Phenotypic variation in paediatric inflammatory bowel disease by age: a multicentre prospective inception cohort study of the canadian children IBD network. J Crohns Colitis. 2020;14:445–54.

    CAS  PubMed  Google Scholar 

  67. Ricciuto A, Fish JR, Tomalty DE, et al. Diagnostic delay in Canadian children with inflammatory bowel disease is more common in Crohn’s disease and associated with decreased height. Arch Dis Child. 2018;103:319–26.

    PubMed  Google Scholar 

  68. Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17:1314–21.

    PubMed  Google Scholar 

  69. Gupta N, Liu C, King E, et al. Continued statural growth in older adolescents and young adults with Crohn’s disease and ulcerative colitis beyond the time of expected growth plate closure. Inflamm Bowel Dis. 2020;26(12):1880–9.

    PubMed  Google Scholar 

  70. Gupta N, Lustig RH, Kohn MA, Vittinghoff E. Determination of bone age in pediatric patients with Crohnʼs disease should become part of routine care. Inflamm Bowel Dis. 2013;19:61–5.

    PubMed  Google Scholar 

  71. Ferguson A, Sedgwick DM. Juvenile onset inflammatory bowel disease: height and body mass index in adult life. BMJ. 1994;308:1259–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ghersin I, Khateeb N, Katz LH, Daher S, Shamir R, Assa A. Anthropometric measures in adolescents with inflammatory bowel disease: a population-based study. Inflamm Bowel Dis. 2019;25:1061–5.

    PubMed  Google Scholar 

  73. Birimberg-Schwartz L, Zucker DM, Akriv A, et al. Development and validation of diagnostic criteria for IBD subtypes including IBD-unclassified in children: a multicentre study from the Pediatric IBD Porto Group of ESPGHAN. J Crohns Colitis. 2017;11:1078–84.

    PubMed  Google Scholar 

  74. Ledder O, Sonnino M, Birimberg-Schwartz L, et al. Appraisal of the PIBD-classes criteria: a multicenter validation. J Crohns Colitis. 2020;

    Google Scholar 

  75. Ricciuto A, Hansen BE, Ngo B, et al. Primary sclerosing cholangitis in children with inflammatory bowel diseases is associated with milder clinical activity but more frequent subclinical inflammation and growth impairment. Clin Gastroenterol Hepatol. 2020;18:1509–17.e7.

    PubMed  Google Scholar 

  76. Adamek A, Kasprzak A. Insulin-Like Growth Factor (IGF) system in liver diseases. Int J Mol Sci. 2018;19(5):1308

    Google Scholar 

  77. Timmer A, Behrens R, Buderus S, et al. Childhood onset inflammatory bowel disease: predictors of delayed diagnosis from the CEDATA German-language pediatric inflammatory bowel disease registry. J Pediatr. 2011;158(467–73):e2.

    Google Scholar 

  78. Ballinger AB, Savage MO, Sanderson IR. Delayed puberty associated with inflammatory bowel disease. Pediatr Res. 2003;53:205–10.

    PubMed  Google Scholar 

  79. DeBoer MD, Denson LA. Delays in puberty, growth, and accrual of bone mineral density in pediatric Crohn’s disease: despite temporal changes in disease severity, the need for monitoring remains. J Pediatr. 2013;163:17–22.

    PubMed  PubMed Central  Google Scholar 

  80. Walters TD, Griffiths AM. Mechanisms of growth impairment in pediatric Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2009;6:513–23.

    CAS  PubMed  Google Scholar 

  81. Kelts DG, Grand RJ, Shen G, Watkins JB, Werlin SL, Boehme C. Nutritional basis of growth failure in children and adolescents with Crohn’s disease. Gastroenterology. 1979;76:720–7.

    CAS  PubMed  Google Scholar 

  82. Hill RJ, Lewindon PJ, Withers GD, et al. Ability of commonly used prediction equations to predict resting energy expenditure in children with inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:1587–93.

    PubMed  Google Scholar 

  83. Gerasimidis K, McGrogan P, Edwards CA. The aetiology and impact of malnutrition in paediatric inflammatory bowel disease. J Hum Nutr Diet. 2011;24:313–26.

    CAS  PubMed  Google Scholar 

  84. Pons R, Whitten KE, Woodhead H, Leach ST, Lemberg DA, Day AS. Dietary intakes of children with Crohn’s disease. Br J Nutr. 2009;102:1052–7.

    CAS  PubMed  Google Scholar 

  85. Kirschner BS, Klich JR, Kalman SS, deFavaro MV, Rosenberg IH. Reversal of growth retardation in Crohn’s disease with therapy emphasizing oral nutritional restitution. Gastroenterology. 1981;80:10–5.

    CAS  PubMed  Google Scholar 

  86. Ballinger A, El-Haj T, Perrett D, et al. The role of medial hypothalamic serotonin in the suppression of feeding in a rat model of colitis. Gastroenterology. 2000;118:544–53.

    CAS  PubMed  Google Scholar 

  87. El-Haj T, Poole S, Farthing MJ, Ballinger AB. Anorexia in a rat model of colitis: interaction of interleukin-1 and hypothalamic serotonin. Brain Res. 2002;927:1–7.

    CAS  PubMed  Google Scholar 

  88. Ates Y, Degertekin B, Erdil A, Yaman H, Dagalp K. Serum ghrelin levels in inflammatory bowel disease with relation to disease activity and nutritional status. Dig Dis Sci. 2008;53:2215–21.

    CAS  PubMed  Google Scholar 

  89. Moran GW, Leslie FC, McLaughlin JT. Crohn’s disease affecting the small bowel is associated with reduced appetite and elevated levels of circulating gut peptides. Clin Nutr. 2013;32:404–11.

    CAS  PubMed  Google Scholar 

  90. Filipsson S, Hulten L, Lindstedt G. Malabsorption of fat and vitamin B12 before and after intestinal resection for Crohn’s disease. Scand J Gastroenterol. 1978;13:529–36.

    CAS  PubMed  Google Scholar 

  91. Griffiths AM, Drobnies A, Soldin SJ, Hamilton JR. Enteric protein loss measured by fecal alpha 1-antitrypsin clearance in the assessment of Crohn’s disease activity: a study of children and adolescents. J Pediatr Gastroenterol Nutr. 1986;5:907–11.

    CAS  PubMed  Google Scholar 

  92. Azcue M, Rashid M, Griffiths A, Pencharz PB. Energy expenditure and body composition in children with Crohn’s disease: effect of enteral nutrition and treatment with prednisolone. Gut. 1997;41:203–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. De Benedetti F, Alonzi T, Moretta A, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest. 1997;99:643–50.

    PubMed  PubMed Central  Google Scholar 

  94. Ballinger AB, Azooz O, El-Haj T, Poole S, Farthing MJ. Growth failure occurs through a decrease in insulin-like growth factor 1 which is independent of undernutrition in a rat model of colitis. Gut. 2000;46:694–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Martensson K, Chrysis D, Savendahl L. Interleukin-1beta and TNF-alpha act in synergy to inhibit longitudinal growth in fetal rat metatarsal bones. J Bone Miner Res. 2004;19:1805–12.

    CAS  PubMed  Google Scholar 

  96. Varghese S, Wyzga N, Griffiths AM, Sylvester FA. Effects of serum from children with newly diagnosed Crohn disease on primary cultures of rat osteoblasts. J Pediatr Gastroenterol Nutr. 2002;35:641–8.

    CAS  PubMed  Google Scholar 

  97. Kirschner BS, Sutton MM. Somatomedin-C levels in growth-impaired children and adolescents with chronic inflammatory bowel disease. Gastroenterology. 1986;91:830–6.

    CAS  PubMed  Google Scholar 

  98. Tenore A, Berman WF, Parks JS, Bongiovanni AM. Basal and stimulated serum growth hormone concentrations in inflammatory bowel disease. J Clin Endocrinol Metab. 1977;44:622–8.

    CAS  PubMed  Google Scholar 

  99. Wang X, Jiang J, Warram J, et al. Endotoxin-induced proteolytic reduction in hepatic growth hormone (GH) receptor: a novel mechanism for GH insensitivity. Mol Endocrinol. 2008;22:1427–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Denson LA, Menon RK, Shaufl A, Bajwa HS, Williams CR, Karpen SJ. TNF-alpha downregulates murine hepatic growth hormone receptor expression by inhibiting Sp1 and Sp3 binding. J Clin Invest. 2001;107:1451–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dejkhamron P, Thimmarayappa J, Kotlyarevska K, et al. Lipopolysaccharide (LPS) directly suppresses growth hormone receptor (GHR) expression through MyD88-dependent and -independent Toll-like receptor-4/MD2 complex signaling pathways. Mol Cell Endocrinol. 2007;274:35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Colson A, Le Cam A, Maiter D, Edery M, Thissen JP. Potentiation of growth hormone-induced liver suppressors of cytokine signaling messenger ribonucleic acid by cytokines. Endocrinology. 2000;141:3687–95.

    CAS  PubMed  Google Scholar 

  103. Cohney SJ, Sanden D, Cacalano NA, et al. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol. 1999;19:4980–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ram PA, Waxman DJ. Role of the cytokine-inducible SH2 protein CIS in desensitization of STAT5b signaling by continuous growth hormone. J Biol Chem. 2000;275:39487–96.

    CAS  PubMed  Google Scholar 

  105. Shumate ML, Yumet G, Ahmed TA, Cooney RN. Interleukin-1 inhibits the induction of insulin-like growth factor-I by growth hormone in CWSV-1 hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2005;289:G227–39.

    CAS  PubMed  Google Scholar 

  106. De Benedetti F, Meazza C, Oliveri M, et al. Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology. 2001;142:4818–26.

    PubMed  Google Scholar 

  107. Mauras N. Growth hormone therapy in the glucocorticosteroid-dependent child: metabolic and linear growth effects. Horm Res. 2001;56(Suppl. 1):13–8.

    CAS  PubMed  Google Scholar 

  108. De Benedetti F, Rucci N, Del Fattore A, et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 2006;54:3551–63.

    PubMed  Google Scholar 

  109. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38.

    CAS  PubMed  Google Scholar 

  110. Tamura T, Udagawa N, Takahashi N, et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci U S A. 1993;90:11924–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Franchimont N, Wertz S, Malaise M. Interleukin-6: an osteotropic factor influencing bone formation? Bone. 2005;37:601–6.

    CAS  PubMed  Google Scholar 

  112. D'Mello S, Trauernicht A, Ryan A, et al. Innate dysfunction promotes linear growth failure in pediatric Crohn’s disease and growth hormone resistance in murine ileitis. Inflamm Bowel Dis. 2012;18:236–45.

    PubMed  Google Scholar 

  113. Gonçalves P, Araújo JR, Di Santo JP. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 2018;24:558–72.

    PubMed  Google Scholar 

  114. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    PubMed  PubMed Central  Google Scholar 

  115. Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;113:E7554–E63.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yan J, Charles JF. Gut Microbiota and IGF-1. Calcif Tissue Int. 2018;102:406–14.

    PubMed  PubMed Central  Google Scholar 

  117. Bross DA, Leichtner AM, Zurakowski D, Law T, Bousvaros A. Elevation of serum interleukin-6 but not serum-soluble interleukin-2 receptor in children with Crohn’s disease. J Pediatr Gastroenterol Nutr. 1996;23:164–71.

    CAS  PubMed  Google Scholar 

  118. Suzuki A, Hanada T, Mitsuyama K, et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med. 2001;193:471–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tebbutt NC, Giraud AS, Inglese M, et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med. 2002;8:1089–97.

    CAS  PubMed  Google Scholar 

  120. Nicholson SE, De Souza D, Fabri LJ, et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci U S A. 2000;97:6493–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Carey R, Jurickova I, Ballard E, et al. Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:446–57.

    PubMed  Google Scholar 

  122. Mudter J, Weigmann B, Bartsch B, et al. Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol. 2005;100:64–72.

    CAS  PubMed  Google Scholar 

  123. Cassidy JT, Hillman LS. Abnormalities in skeletal growth in children with juvenile rheumatoid arthritis. Rheum Dis Clin N Am. 1997;23:499–522.

    CAS  Google Scholar 

  124. MacRae VE, Farquharson C, Ahmed SF. The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology (Oxford). 2006;45:11–9.

    CAS  PubMed  Google Scholar 

  125. Sawczenko A, Azooz O, Paraszczuk J, et al. Intestinal inflammation-induced growth retardation acts through IL-6 in rats and depends on the −174 IL-6 G/C polymorphism in children. Proc Natl Acad Sci U S A. 2005;102:13260–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cezard JP, Touati G, Alberti C, Hugot JP, Brinon C, Czernichow P. Growth in paediatric Crohn’s disease. Horm Res. 2002;58(Suppl. 1):11–5.

    CAS  PubMed  Google Scholar 

  127. Bernstein CN, Leslie WD. The pathophysiology of bone disease in gastrointestinal disease. Eur J Gastroenterol Hepatol. 2003;15:857–64.

    CAS  PubMed  Google Scholar 

  128. Lien G, Selvaag AM, Flato B, et al. A two-year prospective controlled study of bone mass and bone turnover in children with early juvenile idiopathic arthritis. Arthritis Rheum. 2005;52:833–40.

    PubMed  Google Scholar 

  129. Ito H, Takazoe M, Fukuda Y, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology. 2004;126:989–96. discussion 47

    CAS  PubMed  Google Scholar 

  130. Nishimoto N, Kishimoto T. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol. 2004;4:386–91.

    CAS  PubMed  Google Scholar 

  131. Nishimoto N, Yoshizaki K, Miyasaka N, et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2004;50:1761–9.

    CAS  PubMed  Google Scholar 

  132. Yokota S, Miyamae T, Imagawa T, et al. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2005;52:818–25.

    CAS  PubMed  Google Scholar 

  133. Wolk K, Witte E, Hoffmann U, et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn’s disease. J Immunol. 2007;178:5973–81.

    CAS  PubMed  Google Scholar 

  134. Allen DB. Influence of inhaled corticosteroids on growth: a pediatric endocrinologist's perspective. Acta Paediatr. 1998;87:123–9.

    CAS  PubMed  Google Scholar 

  135. Gupta N, Lustig RH, Kohn MA, Vittinghoff E. Menarche in pediatric patients with Crohn’s disease. Dig Dis Sci. 2012;57:2975–81.

    PubMed  Google Scholar 

  136. Wu T, Mendola P, Buck GM. Ethnic differences in the presence of secondary sex characteristics and menarche among US girls: the Third National Health and Nutrition Examination Survey, 1988–1994. Pediatrics. 2002;110:752–7.

    PubMed  Google Scholar 

  137. Susman EJ, Houts RM, Steinberg L, et al. Longitudinal development of secondary sexual characteristics in girls and boys between ages 91/2 and 151/2 years. Arch Pediatr Adolesc Med. 2010;164:166–73.

    PubMed  PubMed Central  Google Scholar 

  138. Brain CE, Savage MO. Growth and puberty in chronic inflammatory bowel disease. Baillieres Clin Gastroenterol. 1994;8:83–100.

    CAS  PubMed  Google Scholar 

  139. Azooz OG, Farthing MJ, Savage MO, Ballinger AB. Delayed puberty and response to testosterone in a rat model of colitis. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1483–91.

    CAS  PubMed  Google Scholar 

  140. DeBoer MD, Li Y, Cohn S. Colitis causes delay in puberty in female mice out of proportion to changes in leptin and corticosterone. J Gastroenterol. 2010;45:277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Deboer MD, Li Y. Puberty is delayed in male mice with dextran sodium sulfate colitis out of proportion to changes in food intake, body weight, and serum levels of leptin. Pediatr Res. 2011;69:34–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mizokami A, Gotoh A, Yamada H, Keller ET, Matsumoto T. Tumor necrosis factor-alpha represses androgen sensitivity in the LNCaP prostate cancer cell line. J Urol. 2000;164:800–5.

    CAS  PubMed  Google Scholar 

  143. Zadik Z, Cooper M, Chen M, Stern N. Cushing’s disease presenting as pubertal arrest. J Pediatr Endocrinol. 1993;6:201–4.

    CAS  PubMed  Google Scholar 

  144. Deboer MD, Steinman J, Li Y. Partial normalization of pubertal timing in female mice with DSS colitis treated with anti-TNF-alpha antibody. J Gastroenterol. 2012;47:647–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Russell RK, Drummond HE, Nimmo EE, et al. Genotype-phenotype analysis in childhood-onset Crohn’s disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis. 2005;11:955–64.

    PubMed  Google Scholar 

  146. Tomer G, Ceballos C, Concepcion E, Benkov KJ. NOD2/CARD15 variants are associated with lower weight at diagnosis in children with Crohn’s disease. Am J Gastroenterol. 2003;98:2479–84.

    CAS  PubMed  Google Scholar 

  147. Russell RK, Drummond HE, Nimmo ER, et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth indices in early onset inflammatory bowel disease. Gut. 2006;55:1114–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee JJ, Essers JB, Kugathasan S, et al. Association of linear growth impairment in pediatric Crohn’s disease and a known height locus: a pilot study. Ann Hum Genet. 2010;74:489–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Levine A, Shamir R, Wine E, et al. TNF promoter polymorphisms and modulation of growth retardation and disease severity in pediatric Crohn’s disease. Am J Gastroenterol. 2005;100:1598–604.

    CAS  PubMed  Google Scholar 

  150. Griffiths AM, Otley AR, Hyams J, et al. A review of activity indices and end points for clinical trials in children with Crohn’s disease. Inflamm Bowel Dis. 2005;11:185–96.

    PubMed  Google Scholar 

  151. Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr. 2008;153:484–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Thayu M, Leonard MB, Hyams JS, et al. Improvement in biomarkers of bone formation during infliximab therapy in pediatric Crohn’s disease: results of the REACH study. Clin Gastroenterol Hepatol. 2008;6:1378–84.

    CAS  PubMed  Google Scholar 

  153. Wong SC, Smyth A, McNeill E, et al. The growth hormone insulin-like growth factor 1 axis in children and adolescents with inflammatory bowel disease and growth retardation. Clin Endocrinol (Oxf). 2010;73:220–8.

    Google Scholar 

  154. Heuschkel R, Salvestrini C, Beattie RM, Hildebrand H, Walters T, Griffiths A. Guidelines for the management of growth failure in childhood inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:839–49.

    PubMed  Google Scholar 

  155. Griffiths AM, Nicholas D, Smith C, et al. Development of a quality-of-life index for pediatric inflammatory bowel disease: dealing with differences related to age and IBD type. J Pediatr Gastroenterol Nutr. 1999;28:S46–52.

    CAS  PubMed  Google Scholar 

  156. Aiges H, Markowitz J, Rosa J, Daum F. Home nocturnal supplemental nasogastric feedings in growth-retarded adolescents with Crohn’s disease. Gastroenterology. 1989;97:905–10.

    CAS  PubMed  Google Scholar 

  157. Belli DC, Seidman E, Bouthillier L, et al. Chronic intermittent elemental diet improves growth failure in children with Crohn’s disease. Gastroenterology. 1988;94:603–10.

    CAS  PubMed  Google Scholar 

  158. Wilschanski M, Sherman P, Pencharz P, Davis L, Corey M, Griffiths A. Supplementary enteral nutrition maintains remission in paediatric Crohn’s disease. Gut. 1996;38:543–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bannerjee K, Camacho-Hubner C, Babinska K, et al. Anti-inflammatory and growth-stimulating effects precede nutritional restitution during enteral feeding in Crohn disease. J Pediatr Gastroenterol Nutr. 2004;38:270–5.

    CAS  PubMed  Google Scholar 

  160. Gassull MA, Stange EF. Nutrition and diet in inflammatory bowel disease. In: Satsangi J, Sutherland LR, editors. Inflammatory bowel diseases. London, UK: Elsevier; 2003. p. 461–74.

    Google Scholar 

  161. Walker-Smith JA. Management of growth failure in Crohn’s disease. Arch Dis Child. 1996;75:351–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Newby E, Sawczenko A, Thomas A, Wilson D. Interventions for growth failure in childhood Crohn’s disease. Cochrane Database Syst Rev. 2005:CD003873.

    Google Scholar 

  163. Fell JM, Paintin M, Arnaud-Battandier F, et al. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease. Aliment Pharmacol Ther. 2000;14:281–9.

    CAS  PubMed  Google Scholar 

  164. Zachos M, Tondeur M, Griffiths AM. Enteral nutritional therapy for inducing remission of Crohn’s disease. Cochrane Database Syst Rev. 2001:CD000542.

    Google Scholar 

  165. Heuschkel RB, Menache CC, Megerian JT, Baird AE. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children. J Pediatr Gastroenterol Nutr. 2000;31:8–15.

    CAS  PubMed  Google Scholar 

  166. Griffiths AM, Ohlsson A, Sherman PM, Sutherland LR. Meta-analysis of enteral nutrition as a primary treatment of active Crohn’s disease. Gastroenterology. 1995;108:1056–67.

    CAS  PubMed  Google Scholar 

  167. Seidman E, Griffiths AM, Jones A. Semi-elemntal diet versus prednisone in the treatment of acute Crohn’s disease in children and adolescents. Gastroenterology. 1993;104:A778.

    Google Scholar 

  168. Griffiths AM. Enteral nutrition: the neglected primary therapy of active Crohn’s disease. J Pediatr Gastroenterol Nutr. 2000;31:3–5.

    CAS  PubMed  Google Scholar 

  169. Rigaud D, Cosnes J, Le Quintrec Y, Rene E, Gendre JP, Mignon M. Controlled trial comparing two types of enteral nutrition in treatment of active Crohn’s disease: elemental versus polymeric diet. Gut. 1991;32:1492–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Walters T GAea, The Canadian Children Inflammatory Bowel Disease Network: a joint partnership of the CIHR and ChILD Foundation (CIDsCaNN). Exclusive enteral nutrition versus corticosteroid induction therapy for new onset paediatric Crohn’s disease: comparison of 18 month outcomes in a Canadian prospective multi-centre inception cohort [Abstract] PIBD Congress Budapest 2019, 2019.

    Google Scholar 

  171. Connors J, Basseri S, Grant A, et al. Exclusive enteral nutrition therapy in paediatric Crohn’s disease results in long-term avoidance of corticosteroids: results of a propensity-score matched cohort analysis. J Crohns Colitis. 2017;11:1063–70.

    PubMed  PubMed Central  Google Scholar 

  172. Escher JC. Budesonide versus prednisolone for the treatment of active Crohn’s disease in children: a randomized, double-blind, controlled, multicentre trial. Eur J Gastroenterol Hepatol. 2004;16:47–54.

    CAS  PubMed  Google Scholar 

  173. Papi C, Luchetti R, Gili L, Montanti S, Koch M, Capurso L. Budesonide in the treatment of Crohn’s disease: a meta-analysis. Aliment Pharmacol Ther. 2000;14:1419–28.

    CAS  PubMed  Google Scholar 

  174. Kundhal P, Zachos M, Holmes JL, Griffiths AM. Controlled ileal release budesonide in pediatric Crohn disease: efficacy and effect on growth. J Pediatr Gastroenterol Nutr. 2001;33:75–80.

    CAS  PubMed  Google Scholar 

  175. Markowitz J, Grancher K, Kohn N, Lesser M, Daum F. A multicenter trial of 6-mercaptopurine and prednisone in children with newly diagnosed Crohn’s disease. Gastroenterology. 2000;119:895–902.

    CAS  PubMed  Google Scholar 

  176. Turner D, Grossman AB, Rosh J, et al. Methotrexate following unsuccessful thiopurine therapy in pediatric Crohn’s disease. Am J Gastroenterol. 2007;102:2804–12. quiz 3, 13

    CAS  PubMed  Google Scholar 

  177. Thayu M, Denson LA, Shults J, et al. Determinants of changes in linear growth and body composition in incident pediatric Crohn’s disease. Gastroenterology. 2010;139:430–8.

    Google Scholar 

  178. Hyams J, Crandall W, Kugathasan S, et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology. 2007;132:863–73. quiz 1165-6

    CAS  PubMed  Google Scholar 

  179. Walters TD, Gilman AR, Griffiths A. Infliximab therapy restores normal growth in children with chronically active severe crohn disease refractory to immunomodulatory therapy. Gastroenterology. 2005;128(Suppl. 2):A27.

    Google Scholar 

  180. de Ridder L, Escher JC, Bouquet J, et al. Infliximab therapy in 30 patients with refractory pediatric crohn disease with and without fistulas in The Netherlands. J Pediatr Gastroenterol Nutr. 2004;39:46–52.

    PubMed  Google Scholar 

  181. Borrelli O, Bascietto C, Viola F, et al. Infliximab heals intestinal inflammatory lesions and restores growth in children with Crohn's disease. Dig Liver Dis. 2004;36:342–7.

    CAS  PubMed  Google Scholar 

  182. Cezard JP, Nouaili N, Talbotec C, et al. A prospective study of the efficacy and tolerance of a chimeric antibody to tumor necrosis factors (remicade) in severe pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2003;36:632–6.

    CAS  PubMed  Google Scholar 

  183. Wanty C, Stephenne X, Sokal E, Smets F. Long-term outcome of infliximab therapy in pediatric Crohn disease. Arch Pediatr. 2011;18:863–9.

    Google Scholar 

  184. Malik S, Wong SC, Bishop J, et al. Improvement in growth of children with Crohn disease following anti-TNF-alpha therapy can be independent of pubertal progress and glucocorticoid reduction. J Pediatr Gastroenterol Nutr. 2011;52:31–7.

    Google Scholar 

  185. Malik S, Ahmed SF, Wilson ML, et al. The effects of anti-TNF-alpha treatment with adalimumab on growth in children with Crohn’s disease (CD). J Crohns Colitis. 2012;6:337–44.

    CAS  PubMed  Google Scholar 

  186. Church PC, Guan J, Walters TD, et al. Infliximab maintains durable response and facilitates catch-up growth in luminal pediatric Crohn’s disease. Inflamm Bowel Dis. 2014;20:1177–86.

    PubMed  Google Scholar 

  187. Walters TD, Hyams JS. Can early anti-TNF-alpha treatment be an effective therapeutic strategy in children with Crohn’s disease? Immunotherapy. 2014;6:799–802.

    CAS  PubMed  Google Scholar 

  188. Crombe V, Salleron J, Savoye G, et al. Long-term outcome of treatment with infliximab in pediatric-onset Crohn’s disease: a population-based study. Inflamm Bowel Dis. 2011;17:2144–52.

    PubMed  Google Scholar 

  189. Griffiths AM, Hyams JS, Crandall W. Height of children with Active Crohn’s Disease Improves During Treatment with Infliximab. Gastroenterology. 2006;130(Suppl. 2):A59.

    Google Scholar 

  190. Hyams J, Walters TD, Crandall W, et al. Safety and efficacy of maintenance infliximab therapy for moderate-to-severe Crohn’s disease in children: REACH open-label extension. Curr Med Res Opin. 2011;27:651–62.

    Google Scholar 

  191. Hyams JS, Griffiths A, Markowitz J, et al. Safety and efficacy of adalimumab for moderate to severe Crohn’s disease in children. Gastroenterology. 2012;143(365–74):e2.

    Google Scholar 

  192. Walters TD, Faubion WA, Griffiths AM, et al. Growth improvement with adalimumab treatment in children with moderately to severely active Crohn’s disease. Inflamm Bowel Dis. 2017;23:967–75.

    PubMed  Google Scholar 

  193. DiFedele LM, He J, Bonkowski EL, et al. Tumor necrosis factor alpha blockade restores growth hormone signaling in murine colitis. Gastroenterology. 2005;128:1278–91.

    CAS  PubMed  Google Scholar 

  194. Vespasiani Gentilucci U, Caviglia R, Picardi A, et al. Infliximab reverses growth hormone resistance associated with inflammatory bowel disease. Aliment Pharmacol Ther. 2005;21:1063–71.

    CAS  PubMed  Google Scholar 

  195. Ruemmele FM, Veres G, Kolho KL, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J Crohns Colitis. 2014;8:1179–207.

    CAS  PubMed  Google Scholar 

  196. Nicholls S, Vieira MC, Majrowski WH, Shand WS, Savage MO, Walker-Smith JA. Linear growth after colectomy for ulcerative colitis in childhood. J Pediatr Gastroenterol Nutr. 1995;21:82–6.

    CAS  PubMed  Google Scholar 

  197. Griffiths AM, Wesson DE, Shandling B, Corey M, Sherman PM. Factors influencing postoperative recurrence of Crohn’s disease in childhood. Gut. 1991;32:491–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Davies G, Evans CM, Shand WS, Walker-Smith JA. Surgery for Crohn’s disease in childhood: influence of site of disease and operative procedure on outcome. Br J Surg. 1990;77:891–4.

    CAS  PubMed  Google Scholar 

  199. Baldassano RN, Han PD, Jeshion WC, et al. Pediatric Crohn’s disease: risk factors for postoperative recurrence. Am J Gastroenterol. 2001;96:2169–76.

    CAS  PubMed  Google Scholar 

  200. McCaffery TD Jr, Nasr K, Lawrence AM, Kirsner JB. Effect of administered human growth hormone on growth retardation in inflammatory bowel disease. Am J Dig Dis. 1974;19:411–6.

    PubMed  Google Scholar 

  201. Henker J. Therapy with recombinant growth hormone in children with Crohn disease and growth failure. Eur J Pediatr. 1996;155:1066–7.

    CAS  PubMed  Google Scholar 

  202. Henker J. Effect of growth hormone therapy in patients with Crohn disease. J Pediatr Gastroenterol Nutr. 2002;34:424–5.

    PubMed  Google Scholar 

  203. Heyman MB, Garnett EA, Wojcicki J, et al. Growth hormone treatment for growth failure in pediatric patients with Crohn’s disease. J Pediatr. 2008;153:651–8. 8 e1-3

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Calenda KA, Schornagel IL, Sadeghi-Nejad A, Grand RJ. Effect of recombinant growth hormone treatment on children with Crohn’s disease and short stature: a pilot study. Inflamm Bowel Dis. 2005;11:435–41.

    PubMed  Google Scholar 

  205. Denson LA, Kim MO, Bezold R, et al. A randomized controlled trial of growth hormone in active pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2010;51:130–9.

    Google Scholar 

  206. Wong SC, Kumar P, Galloway PJ, et al. A preliminary trial of the effect of recombinant human growth hormone on shortterm linear growth and glucose homeostasis in children with Crohn’s disease. Clin Endocrinol (Oxf). 2011;74:599–607.

    Google Scholar 

  207. Vortia E, Kay M, Wyllie R. The role of growth hormone and insulin-like growth factor-1 in Crohn’s disease: implications for therapeutic use of human growth hormone in pediatric patients. Curr Opin Pediatr. 2011;23:545–51.

    Google Scholar 

  208. Bechtold S, Ripperger P, Dalla Pozza R, et al. Dynamics of body composition and bone in patients with juvenile idiopathic arthritis treated with growth hormone. J Clin Endocrinol Metab. 2010;95:178–85.

    Google Scholar 

  209. Phung OJ, Coleman CI, Baker EL, et al. Recombinant human growth hormone in the treatment of patients with cystic fibrosis. Pediatrics. 2010;126:e1211–26.

    Google Scholar 

  210. Mauras N, George D, Evans J, et al. Growth hormone has anabolic effects in glucocorticosteroid-dependent children with inflammatory bowel disease: a pilot study. Metabolism. 2002;51:127–35.

    CAS  PubMed  Google Scholar 

  211. Slonim AE, Bulone L, Damore MB, Goldberg T, Wingertzahn MA, McKinley MJ. A preliminary study of growth hormone therapy for Crohn’s disease. N Engl J Med. 2000;342:1633–7.

    CAS  PubMed  Google Scholar 

  212. Han X, Sosnowska D, Bonkowski EL, Denson LA. Growth hormone inhibits signal transducer and activator of transcription 3 activation and reduces disease activity in murine colitis. Gastroenterology. 2005;129:185–203.

    CAS  PubMed  Google Scholar 

  213. Rao A, Standing JF, Naik S, Savage MO, Sanderson IR. Mathematical modelling to restore circulating IGF-1 concentrations in children with Crohn’s disease-induced growth failure: a pharmacokinetic study. BMJ Open. 2013;3

    Google Scholar 

  214. Mason A, Wong SC, McGrogan P, Ahmed SF. Effect of testosterone therapy for delayed growth and puberty in boys with inflammatory bowel disease. Horm Res Paediatr. 2011;75:8–13.

    Google Scholar 

  215. Leung DW, Spencer SA, Cachianes G, et al. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature. 1987;330:537–43.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Walters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, J., Walters, T.D. (2023). Growth Impairment in Pediatric Inflammatory Bowel Disease. In: Mamula, P., Kelsen, J.R., Grossman, A.B., Baldassano, R.N., Markowitz, J.E. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-14744-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14744-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14743-2

  • Online ISBN: 978-3-031-14744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics