Skip to main content

Neural Plasticity in Human Fathers

  • Chapter
  • First Online:
Handbook of Fathers and Child Development

Abstract

Both new mothers and fathers undergo neural changes that support positive adaptation to parenting and the development of parent-infant relationships. In this chapter, we review important psychological adaptations that fathers and mothers experience during the transition to parenthood. We then review evidence of structural and functional plasticity in human fathers’ and mothers’ brains and explore how such plasticity supports their psychological adaptation to parenting and parenting behaviors. Finally, we discuss similar and different vulnerabilities and opportunities for the transition to parenthood in the brains of fathers and mothers and how they may inform interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham, E., Hendler, T., Shapira-Lichter, I., Kanat-Maymon, Y., Zagoory-Sharon, O., & Feldman, R. (2014). Father’s brain is sensitive to childcare experiences. Proceedings of the National Academy of Sciences, 111(27), 9792–9797. https://doi.org/10.1073/pnas.1402569111

    Article  Google Scholar 

  • Abraham, E., Hendler, T., Zagoory-Sharon, O., & Feldman, R. (2016). Network integrity of the parental brain in infancy supports the development of children’s social competencies. Social Cognitive and Affective Neuroscience, 11(11), 1707–1718. https://doi.org/10.1093/scan/nsw090

    Article  Google Scholar 

  • Abraham, E., Raz, G., Zagoory-Sharon, O., & Feldman, R. (2018). Empathy networks in the parental brain and their long-term effects on children’s stress reactivity and behavior adaptation. Neuropsychologia, 116, 75–85. https://doi.org/10.1016/j.neuropsychologia.2017.04.015

    Article  Google Scholar 

  • Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169–177.

    Article  Google Scholar 

  • Akther, S., Fakhrul, A. A. K. M., & Higashida, H. (2014). Effects of electrical lesions of the medial preoptic area and the ventral pallidum on mate-dependent paternal behavior in mice. Neuroscience Letters, 570, 21–25. https://doi.org/10.1016/j.neulet.2014.03.078

    Article  Google Scholar 

  • Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267–278.

    Article  Google Scholar 

  • Apter-Levi, Y., Zagoory-Sharon, O., & Feldman, R. (2014). Oxytocin and vasopressin support distinct configurations of social synchrony. Brain Research, 1580, 124–132. https://doi.org/10.1016/j.brainres.2013.10.052

    Article  Google Scholar 

  • Atzil, S., Hendler, T., Zagoory-Sharon, O., Winetraub, Y., & Feldman, R. (2012). Synchrony and specificity in the maternal and the paternal brain: Relations to oxytocin and vasopressin. Journal of the American Academy of Child & Adolescent Psychiatry, 51(8), 798–811. https://doi.org/10.1016/j.jaac.2012.06.008

    Article  Google Scholar 

  • Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala–cortical functional connectivity predicts social network size in humans. Journal of Neuroscience, 32(42), 14729–14741.

    Article  Google Scholar 

  • Bielsky, I. F., Hu, S.-B., & Young, L. J. (2005). Sexual dimorphism in the vasopressin system: Lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behavioural Brain Research, 164(1), 132–136.

    Article  Google Scholar 

  • Boukydis, C. Z., & Burgess, R. L. (1982). Adult physiological response to infant cries: Effects of temperament of infant, parental status, and gender. Child Development, 53, 1291–1298.

    Article  Google Scholar 

  • Carlson, M. J., & Magnuson, K. A. (2011). Low-income fathers’ influence on children. The Annals of the American Academy of Political and Social Science, 635(1), 95–116. https://doi.org/10.1177/0002716210393853

    Article  Google Scholar 

  • Carretié, L., Mercado, F., Tapia, M., & Hinojosa, J. A. (2001). Emotion, attention, and the ‘negativity bias’, studied through event-related potentials. International Journal of Psychophysiology, 41(1), 75–85.

    Article  Google Scholar 

  • Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23(8), 779–818.

    Article  Google Scholar 

  • Cohen-Bendahan, C. C. C., Beijers, R., van Doornen, L. J. P., & de Weerth, C. (2015). Explicit and implicit caregiving interests in expectant fathers: Do endogenous and exogenous oxytocin and vasopressin matter? Infant Behavior and Development, 41, 26–37. https://doi.org/10.1016/j.infbeh.2015.06.007

    Article  Google Scholar 

  • Dabbs Jr., J. M., & Mohammed, S. (1992). Male and female salivary testosterone concentrations before and after sexual activity. Physiology & Behavior, 52(1), 195–197.

    Article  Google Scholar 

  • Darling, N., & Steinberg, L. (1993). Parenting style as context: An integrative model. Psychological Bulletin, 113(3), 487–496. https://doi.org/10.1037/0033-2909.113.3.487

    Article  Google Scholar 

  • de Jong, T. R., Chauke, M., Harris, B. N., & Saltzman, W. (2009). From here to paternity: Neural correlates of the onset of paternal behavior in California mice (Peromyscus californicus). Hormones and Behavior, 56(2), 220–231. https://doi.org/10.1016/j.yhbeh.2009.05.001

    Article  Google Scholar 

  • De Pisapia, N., Bornstein, M. H., Rigo, P., Esposito, G., De Falco, S., & Venuti, P. (2013). Gender differences in directional brain responses to infant hunger cries. Neuroreport, 24(3), 142–146. https://doi.org/10.1097/WNR.0b013e32835df4fa

    Article  Google Scholar 

  • De Pisapia, N., Turatto, M., Lin, P., Jovicich, J., & Caramazza, A. (2011). Unconscious priming instructions modulate activity in default and executive networks of the human brain. Cerebral Cortex, 22(3), 639–649.

    Article  Google Scholar 

  • Dennis, T. A., & Chen, C.-C. (2007). Neurophysiological mechanisms in the emotional modulation of attention: The interplay between threat sensitivity and attentional control. Biological Psychology, 76(1–2), 1–10.

    Article  Google Scholar 

  • Dolan, R. J. (2002). Emotion, cognition, and behavior. Science, 298(5596), 1191–1194.

    Article  Google Scholar 

  • Feldman, R. (2003). Infant–mother and infant–father synchrony: The coregulation of positive arousal. Infant Mental Health Journal, 24(1), 1–23. https://doi.org/10.1002/imhj.10041

    Article  Google Scholar 

  • Feldman, R. (2015). The adaptive human parental brain: Implications for children’s social development. Trends in Neurosciences, 38(6), 387–399. https://doi.org/10.1016/j.tins.2015.04.004

    Article  Google Scholar 

  • Feldman, R., Braun, K., & Champagne, F. A. (2019). The neural mechanisms and consequences of paternal caregiving. Nature Reviews Neuroscience, 20(4), 205–224. https://doi.org/10.1038/s41583-019-0124-6

    Article  Google Scholar 

  • Feldman, R., Gordon, I., Schneiderman, I., Weisman, O., & Zagoory-Sharon, O. (2010). Natural variations in maternal and paternal care are associated with systematic changes in oxytocin following parent–infant contact. Psychoneuroendocrinology, 35(8), 1133–1141. https://doi.org/10.1016/j.psyneuen.2010.01.013

    Article  Google Scholar 

  • Feldman, R., Weller, A., Zagoory-Sharon, O., & Levine, A. (2007). Evidence for a neuroendocrinological foundation of human affiliation: Plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychological Science, 18(11), 965–970. https://doi.org/10.1111/j.1467-9280.2007.02010.x

    Article  Google Scholar 

  • Fernandez-Duque, E., Valeggia, C. R., & Mendoza, S. P. (2009). The biology of paternal care in human and nonhuman primates. Annual Review of Anthropology, 38, 115–130.

    Article  Google Scholar 

  • Figueredo, A. J., Vásquez, G., Brumbach, B. H., Schneider, S. M., Sefcek, J. A., Tal, I. R., et al. (2006). Consilience and life history theory: From genes to brain to reproductive strategy. Developmental Review, 26(2), 243–275.

    Article  Google Scholar 

  • Fletcher, R., StGeorge, J., & Freeman, E. (2013). Rough and tumble play quality: Theoretical foundations for a new measure of father–child interaction. Early Child Development and Care, 183(6), 746–759. https://doi.org/10.1080/03004430.2012.723439

    Article  Google Scholar 

  • Geary, D. C. (2000). Evolution and proximate expression of human paternal investment. Psychological Bulletin, 126(1), 55.

    Article  Google Scholar 

  • Gettler, L. T., McDade, T. W., Agustin, S., & Kuzawa, C. W. (2011). Short-term changes in fathers’ hormones during father–child play: Impacts of paternal attitudes and experience—ScienceDirect. Hormones and Behavior, 60(5), 599–606.

    Article  Google Scholar 

  • Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences, 108(39), 16194–16199.

    Article  Google Scholar 

  • Glasper, E. R., Hyer, M. M., Katakam, J., Harper, R., Ameri, C., & Wolz, T. (2016). Fatherhood contributes to increased hippocampal spine density and anxiety regulation in California mice. Brain and Behavior, 6(1), n/a–n/a. https://doi.org/10.1002/brb3.416

    Article  Google Scholar 

  • Glasper, E. R., Kozorovitskiy, Y., Pavlic, A., & Gould, E. (2011). Paternal experience suppresses adult neurogenesis without altering hippocampal function in Peromyscus californicus. The Journal of Comparative Neurology, 519(11), 2271–2281. https://doi.org/10.1002/cne.22628

    Article  Google Scholar 

  • Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010a). Oxytocin and the development of parenting in humans. Biological Psychiatry, 68(4), 377–382. https://doi.org/10.1016/j.biopsych.2010.02.005

    Article  Google Scholar 

  • Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010b). Prolactin, oxytocin, and the development of paternal behavior across the first six months of fatherhood. Hormones and Behavior, 58(3), 513–518. https://doi.org/10.1016/j.yhbeh.2010.04.007

    Article  Google Scholar 

  • Graham, J., & Desjardins, C. (1980). Classical conditioning: Induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity. Science, 210(4473), 1039–1041.

    Article  Google Scholar 

  • Gray, P. B., & Crittenden, A. N. (2014). Father Darwin: Effects of children on men, viewed from an evolutionary perspective. Fathering: A Journal of Theory, Research & Practice about Men as Fathers, 12(2), 121.

    Google Scholar 

  • Gray, P. B., Parkin, J., & Samms-Vaughan, M. (2007). Hormonal correlates of human paternal interactions: A hospital-based investigation in urban Jamaica. Hormones and Behavior, 52(4), 499–507.

    Article  Google Scholar 

  • Guastella, A. J., Kenyon, A. R., Alvares, G. A., Carson, D. S., & Hickie, I. B. (2010). Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biological Psychiatry, 67(12), 1220–1222. https://doi.org/10.1016/j.biopsych.2010.03.014

    Article  Google Scholar 

  • Hein, G., & Knight, R. T. (2008). Superior temporal sulcus—It’s my area: Or is it? Journal of Cognitive Neuroscience, 20(12), 2125–2136.

    Article  Google Scholar 

  • Hellhammer, D. H., Hubert, W., & Schürmeyer, T. (1985). Changes in saliva testosterone after psychological stimulation in men. Psychoneuroendocrinology, 10(1), 77–81.

    Article  Google Scholar 

  • Hirschenhauser, K., Frigerio, D., Grammer, K., & Magnusson, M. S. (2002). Monthly patterns of testosterone and behavior in prospective fathers. Hormones and Behavior, 42(2), 172–181.

    Article  Google Scholar 

  • Hoekzema, E., Barba-Müller, E., Pozzobon, C., Picado, M., Lucco, F., García-García, D., et al. (2017). Pregnancy leads to long-lasting changes in human brain structure. Nature Neuroscience, 20(2), 287–296. https://doi.org/10.1038/nn.4458

    Article  Google Scholar 

  • Horrell, N. D., Saltzman, W., & Hickmott, P. W. (2019). Plasticity of paternity: Effects of fatherhood on synaptic, intrinsic and morphological characteristics of neurons in the medial preoptic area of male California mice. Behavioural Brain Research, 365, 89–102. https://doi.org/10.1016/j.bbr.2019.02.029

    Article  Google Scholar 

  • Hudson, D. B., Elek, S. M., & Fleck, M. O. (2001). First-time mothers’ and fathers’ transition to parenthood: Infant care self-efficacy, parenting satisfaction, and infant sex. Issues in Comprehensive Pediatric Nursing, 24(1), 31–43.

    Article  Google Scholar 

  • Hyer, M. M., Hunter, T. J., Katakam, J., Wolz, T., & Glasper, E. R. (2016). Neurogenesis and anxiety-like behavior in male California mice during the mate’s postpartum period. European Journal of Neuroscience, 43(5), 703–709. https://doi.org/10.1111/ejn.13168

    Article  Google Scholar 

  • Isik, L., Koldewyn, K., Beeler, D., & Kanwisher, N. (2017). Perceiving social interactions in the posterior superior temporal sulcus. Proceedings of the National Academy of Sciences, 114(43), E9145–E9152. https://doi.org/10.1073/pnas.1714471114

    Article  Google Scholar 

  • Kim, P., Capistrano, C., & Congleton, C. (2016). Socioeconomic disadvantages and neural sensitivity to infant cry: Role of maternal distress. Social Cognitive and Affective Neuroscience, 11(10), 1597–1607. https://doi.org/10.1093/scan/nsw063

    Article  Google Scholar 

  • Kim, P., Capistrano, C. G., Erhart, A., Gray-Schiff, R., & Xu, N. (2017). Socioeconomic disadvantage, neural responses to infant emotions, and emotional availability among first-time new mothers. Behavioural Brain Research, 325, 188–196. https://doi.org/10.1016/j.bbr.2017.02.001

    Article  Google Scholar 

  • Kim, P., Ho, S. S., Evans, G. W., Liberzon, I., & Swain, J. E. (2015). Childhood social inequalities influences neural processes in young adult caregiving. Developmental Psychobiology, 57(8), 948–960. https://doi.org/10.1002/dev.21325

    Article  Google Scholar 

  • Kim, P., Leckman, J. F., Mayes, L. C., Feldman, R., Wang, X., & Swain, J. E. (2010). The plasticity of human maternal brain: Longitudinal changes in brain anatomy during the early postpartum period. Behavioral Neuroscience, 124(5), 695–700. https://doi.org/10.1037/a0020884

    Article  Google Scholar 

  • Kim, P., Rigo, P., Leckman, J. F., Mayes, L., Cole, P., Feldman, R., & Swain, J. E. (2015). A prospective longitudinal study of perceived infant outcomes at 18-24 months: Neural and psychological correlates of parental thoughts and actions assessed during the first month postpartum. Frontiers in Psychology, 6. Retrieved from https://doaj.org

  • Kim, P., Rigo, P., Mayes, L. C., Feldman, R., Leckman, J. F., & Swain, J. E. (2014). Neural plasticity in fathers of human infants. Social Neuroscience, 9(5), 522–535. https://doi.org/10.1080/17470919.2014.933713

    Article  Google Scholar 

  • Kim, P., Strathearn, L., & Swain, J. E. (2016). The maternal brain and its plasticity in humans. Hormones and Behavior, 77, 113–123. https://doi.org/10.1016/j.yhbeh.2015.08.001

    Article  Google Scholar 

  • Kim, S., Fonagy, P., Allen, J., & Strathearn, L. (2014). Mothers’ unresolved trauma blunts amygdala response to infant distress. Social Neuroscience, 9(4), 352–363. https://doi.org/10.1080/17470919.2014.896287

    Article  Google Scholar 

  • Kirkpatrick, B., Kim, J. W., & Insel, T. R. (1994). Limbic system fos expression associated with paternal behavior. Brain Research, 658(1–2), 112–118. https://doi.org/10.1016/S0006-8993(09)90016-6

    Article  Google Scholar 

  • Kozorovitskiy, Y., Hughes, M., Lee, K., & Gould, E. (2006). Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nature Neuroscience, 9(9), 1094–1095.

    Article  Google Scholar 

  • Kuo, P. X., Carp, J., Light, K. C., & Grewen, K. M. (2012). Neural responses to infants linked with behavioral interactions and testosterone in fathers. Biological Psychology, 91(2), 302–306.

    Article  Google Scholar 

  • Lamb, M. E. (2010). The role of the father in child development (5th ed.). John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  • Lambert, K. G., Franssen, C. L., Bardi, M., Hampton, J. E., Hainley, L., Karsner, S., et al. (2011). Characteristic neurobiological patterns differentiate paternal responsiveness in two Peromyscus species. Brain, Behavior and Evolution, 77(3), 159–175.

    Article  Google Scholar 

  • Lee, A. W., & Brown, R. E. (2002). Medial preoptic lesions disrupt parental behavior in both male and female California mice (Peromyscus californicus). Behavioral Neuroscience, 116(6), 968–975. https://doi.org/10.1037/0735-7044.116.6.968

    Article  Google Scholar 

  • Li, T., Chen, X., Mascaro, J., Haroon, E., & Rilling, J. K. (2017). Intranasal oxytocin, but not vasopressin, augments neural responses to toddlers in human fathers. Hormones and Behavior, 93, 193–202. https://doi.org/10.1016/j.yhbeh.2017.01.006

    Article  Google Scholar 

  • Li, T., Horta, M., Mascaro, J. S., Bijanki, K., Arnal, L. H., Adams, M., et al. (2018). Explaining individual variation in paternal brain responses to infant cries. Physiology & Behavior, 193, 43–54. https://doi.org/10.1016/j.physbeh.2017.12.033

    Article  Google Scholar 

  • Lieberwirth, C., Wang, Y., Jia, X., Liu, Y., & Wang, Z. (2013). Fatherhood reduces the survival of adult-generated cells and affects various types of behavior in the prairie vole (Microtus ochrogaster). European Journal of Neuroscience, 38(9), 3345–3355. https://doi.org/10.1111/ejn.12323

    Article  Google Scholar 

  • Lonstein, J. S., Lévy, F., & Fleming, A. S. (2015). Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Hormones and Behavior, 73, 156–185. https://doi.org/10.1016/j.yhbeh.2015.06.011

    Article  Google Scholar 

  • Mak, G. K., & Weiss, S. (2010). Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nature Neuroscience, 13(6), 753–758. https://doi.org/10.1038/nn.2550

    Article  Google Scholar 

  • Malak, S. M., Crowley, M. J., Mayes, L. C., & Rutherford, H. J. V. (2015). Maternal anxiety and neural responses to infant faces. Journal of Affective Disorders, 172, 324–330. https://doi.org/10.1016/j.jad.2014.10.013

    Article  Google Scholar 

  • Mascaro, J. S., Hackett, P. D., Gouzoules, H., Lori, A., & Rilling, J. K. (2013). Behavioral and genetic correlates of the neural response to infant crying among human fathers. Social Cognitive and Affective Neuroscience, 9(11), 1704–1712.

    Article  Google Scholar 

  • Mascaro, J. S., Hackett, P. D., & Rilling, J. K. (2013). Testicular volume is inversely correlated with nurturing-related brain activity in human fathers. Proceedings of the National Academy of Sciences, 110(39), 15746–15751.

    Article  Google Scholar 

  • Mascaro, J. S., Hackett, P. D., & Rilling, J. K. (2014). Differential neural responses to child and sexual stimuli in human fathers and non-fathers and their hormonal correlates. Psychoneuroendocrinology, 46, 153–163. https://doi.org/10.1016/j.psyneuen.2014.04.014

    Article  Google Scholar 

  • Mascaro, J. S., Rentscher, K. E., Hackett, P. D., Mehl, M. R., & Rilling, J. K. (2017). Child gender influences paternal behavior, language, and brain function. Behavioral Neuroscience, 131(3), 262–273. https://doi.org/10.1037/bne0000199

    Article  Google Scholar 

  • Meyer-lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience; London, 12(9), 524–538. http://dx.doi.org.du.idm.oclc.org/10.1038/nrn3044

    Article  Google Scholar 

  • Musser, E. D., Kaiser-Laurent, H., & Ablow, J. C. (2012). The neural correlates of maternal sensitivity: An fMRI study. Developmental Cognitive Neuroscience, 2(4), 428–436. https://doi.org/10.1016/j.dcn.2012.04.003

    Article  Google Scholar 

  • Nelson, R. J. (2005). An introduction to behavioral endocrinology. Sinauer Associates Inc. Sunderland, M.A.

    Google Scholar 

  • Newman, J. D. (2007). Neural circuits underlying crying and cry responding in mammals. Behavioural Brain Research, 182(2), 155–165.

    Article  Google Scholar 

  • Nishitani, S., Ikematsu, K., Takamura, T., Honda, S., Yoshiura, K.-I., & Shinohara, K. (2017). Genetic variants in oxytocin receptor and arginine-vasopressin receptor 1A are associated with the neural correlates of maternal and paternal affection towards their child. Hormones and Behavior, 87, 47–56. https://doi.org/10.1016/j.yhbeh.2016.09.010

    Article  Google Scholar 

  • Numan, M., & Stolzenberg, D. S. (2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Frontiers in Neuroendocrinology, 30(1), 46–64.

    Article  Google Scholar 

  • Nunes, Fite, & French. (2000). Variation in steroid hormones associated with infant care behaviour and experience in male marmosets (Callithrix kuhlii). Animal Behaviour, 60(6), 857–865. https://doi.org/10.1006/anbe.2000.1524

    Article  Google Scholar 

  • Nunes, S., Fite, J. E., Patera, K. J., & French, J. A. (2001). Interactions among paternal behavior, steroid hormones, and parental experience in male marmosets (Callithrix kuhlii). Hormones and Behavior, 39(1), 70–82. https://doi.org/10.1006/hbeh.2000.1631

    Article  Google Scholar 

  • Paquette, D. (2004). Theorizing the father-child relationship: Mechanisms and developmental outcomes. Human Development, 47(4), 193–219. https://doi.org/10.1159/000078723

    Article  Google Scholar 

  • Pearson, R. M., Lightman, S. L., & Evans, J. (2011). Attentional processing of infant emotion during late pregnancy and mother–infant relations after birth. Archives of Women’s Mental Health, 14(1), 23–31. https://doi.org/10.1007/s00737-010-0180-4

    Article  Google Scholar 

  • Pelphrey, K. A., Morris, J. P., & Mccarthy, G. (2004). Grasping the intentions of others: The perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. Journal of Cognitive Neuroscience, 16(10), 1706–1716.

    Article  Google Scholar 

  • Rickel, A. U., & Biasatti, L. L. (1982). Modification of the block child rearing practices report. Journal of Clinical Psychology, 38(1), 129–134.

    Article  Google Scholar 

  • Rutherford, H. J. V., Wallace, N. S., Laurent, H. K., & Mayes, L. C. (2015). Emotion regulation in parenthood. Developmental Review, 36, 1–14. https://doi.org/10.1016/j.dr.2014.12.008

    Article  Google Scholar 

  • Saxbe, D. E., Edelstein, R. S., Lyden, H. M., Wardecker, B. M., Chopik, W. J., & Moors, A. C. (2017). Fathers’ decline in testosterone and synchrony with partner testosterone during pregnancy predicts greater postpartum relationship investment. Hormones and Behavior, 90, 39–47. https://doi.org/10.1016/j.yhbeh.2016.07.005

    Article  Google Scholar 

  • Seifritz, E., Esposito, F., Neuhoff, J. G., Lüthi, A., Mustovic, H., Dammann, G., et al. (2003). Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54(12), 1367–1375.

    Article  Google Scholar 

  • Shamay-Tsoory, S. G. (2011). The neural bases for empathy. The Neuroscientist, 17(1), 18–24. https://doi.org/10.1177/1073858410379268

    Article  Google Scholar 

  • Simmons, A., Strigo, I., Matthews, S. C., Paulus, M. P., & Stein, M. B. (2006). Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biological Psychiatry, 60(4), 402–409.

    Article  Google Scholar 

  • Singhal, A., Doerfling, P., & Fowler, B. (2002). Effects of a dual task on the N100–P200 complex and the early and late Nd attention waveforms. Psychophysiology, 39(2), 236–245.

    Article  Google Scholar 

  • Snowden, C. T., & Soumi, S. J. (1982). Paternal behavior in primates. In Child nurturance Vol. 3: Studies of development in nonhuman primates (Vol. 3, pp. 63–108). New York: Plenum Press.

    Chapter  Google Scholar 

  • Storey, A., Walsh, C. J., Quinton, R. L., & Wynne-Edwards, K. E. (2000). Hormonal correlates of paternal responsiveness in new and expectant fathers. Evolution and Human Behavior, 21(2), 79–95. https://doi.org/10.1016/S1090-5138(99)00042-2

    Article  Google Scholar 

  • Storey, A. E., Noseworthy, D. E., Delahunty, K. M., Halfyard, S. J., & McKay, D. W. (2011). The effects of social context on the hormonal and behavioral responsiveness of human fathers. Hormones and Behavior, 60(4), 353–361.

    Article  Google Scholar 

  • Storey, A. E., & Ziegler, T. E. (2016). Primate paternal care: Interactions between biology and social experience. Hormones and Behavior, 77, 260–271.

    Article  Google Scholar 

  • Strathearn, L., Fonagy, P., Amico, J., & Montague, P. R. (2009). Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology, 34(13), 2655–2666. https://doi.org/10.1038/npp.2009.103

    Article  Google Scholar 

  • Swain, J., Leckman, J., Mayes, L., Feldman, R., Constable, R., & Schultz, R. (2003). The neural circuitry of parent-infant attachment in the early postpartum. Presented at the American College of Neuropsychopharmacology 42nd Annual Meeting.

    Google Scholar 

  • Swain, J. E., Kim, P., Spicer, J., Ho, S. S., Dayton, C. J., Elmadih, A., et al. (2014). Approaching the biology of human parental attachment: Brain imaging, oxytocin and coordinated assessments of mothers and fathers. Brain Research, 1580, 78–101. https://doi.org/10.1016/j.brainres.2014.03.007

    Article  Google Scholar 

  • Swain, J. E., Leckman, J. F., Mayes, L. C., Feldman, R., Constable, R. T., & Schultz, R. T. (2004). Neural substrates of human parent-infant attachment in the postpartum. Biological Psychiatry, 55, 1S–242S.

    Google Scholar 

  • Tops, M., Peer, J. M. V., Korf, J., Wijers, A. A., & Tucker, D. M. (2007). Anxiety, cortisol, and attachment predict plasma oxytocin. Psychophysiology, 44(3), 444–449. https://doi.org/10.1111/j.1469-8986.2007.00510.x

    Article  Google Scholar 

  • Toscano, J., Bauman, M. D., Mason, W., & Amaral, D. G. (2009). Interest in infants by female rhesus monkeys with neonatal lesions of the amygdala or hippocampus. Neuroscience, 162(4), 881–891.

    Article  Google Scholar 

  • Truzzi, A., Islam, T., Valenzi, S., & Esposito, G. (2020). Infant communicative signals elicit differential brain dynamics in fathers and non-fathers. Early Child Development and Care, 190(4), 549–557, https://doi.org/10.1080/03004430.2018.1482890

  • Tsuneoka, Y., Tokita, K., Yoshihara, C., Amano, T., Esposito, G., Huang, A. J., et al. (2015). Distinct preoptic-BST nuclei dissociate paternal and infanticidal behavior in mice. The EMBO Journal, 34(21), 2652–2670. https://doi.org/10.15252/embj.201591942

    Article  Google Scholar 

  • van Anders, S. M., Tolman, R. M., & Volling, B. L. (2012). Baby cries and nurturance affect testosterone in men. Hormones and Behavior, 61(1), 31–36.

    Article  Google Scholar 

  • Villablanca, J. R. (2010). Why do we have a caudate nucleus. Acta Neurobiologiae Experimentalis (Wars), 70(1), 95–105.

    Google Scholar 

  • Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2012). Oxytocin administration to parent enhances infant physiological and behavioral readiness for social engagement. Biological Psychiatry, 72(12), 982–989. https://doi.org/10.1016/j.biopsych.2012.06.011

    Article  Google Scholar 

  • Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2014). Oxytocin administration, salivary testosterone, and father–infant social behavior. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 49, 47–52. https://doi.org/10.1016/j.pnpbp.2013.11.006

    Article  Google Scholar 

  • Wittfoth-Schardt, D., Gründing, J., Wittfoth, M., Lanfermann, H., Heinrichs, M., Domes, G., et al. (2012). Oxytocin modulates neural reactivity to children’s faces as a function of social salience. Neuropsychopharmacology, 37(8), 1799–1807. https://doi.org/10.1038/npp.2012.47

    Article  Google Scholar 

  • Wonch, K. E., de Medeiros, C. B., Barrett, J. A., Dudin, A., Cunningham, W. A., Hall, G. B., et al. (2016). Postpartum depression and brain response to infants: Differential amygdala response and connectivity. Social Neuroscience, 11(6), 600–617. https://doi.org/10.1080/17470919.2015.1131193

    Article  Google Scholar 

  • Zeifman, D. M. (2003). Predicting adult responses to infant distress: Adult characteristics associated with perceptions, emotional reactions, and timing of intervention. Infant Mental Health Journal, 24(6), 597–612.

    Article  Google Scholar 

  • Ziegler, T. E., Prudom, S. L., Schultz-Darken, N. J., Kurian, A. V., & Snowdon, C. T. (2006). Pregnancy weight gain: Marmoset and tamarin dads show it too. Biology Letters, 2(2), 181–183. https://doi.org/10.1098/rsbl.2005.0426

    Article  Google Scholar 

  • Ziegler, T. E., Prudom, S. L., Zahed, S. R., Parlow, A. F., & Wegner, F. (2009). Prolactin’s mediative role in male parenting in parentally experienced marmosets (Callithrix jacchus). Hormones and Behavior, 56(4), 436–443. https://doi.org/10.1016/j.yhbeh.2009.07.012

    Article  Google Scholar 

  • Ziegler, T. E., Washabaugh, K. F., & Snowdon, C. T. (2004). Responsiveness of expectant male cotton-top tamarins, Saguinus oedipus, to mate’s pregnancy. Hormones and Behavior, 45(2), 84–92. https://doi.org/10.1016/j.yhbeh.2003.09.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grande, L., Tribble, R., Kim, P. (2020). Neural Plasticity in Human Fathers. In: Fitzgerald, H.E., von Klitzing, K., Cabrera, N.J., Scarano de Mendonça, J., Skjøthaug, T. (eds) Handbook of Fathers and Child Development. Springer, Cham. https://doi.org/10.1007/978-3-030-51027-5_11

Download citation

Publish with us

Policies and ethics