Skip to main content

Basic Tools of Multivariate Matching

  • Chapter
  • First Online:
Design of Observational Studies

Part of the book series: Springer Series in Statistics ((SSS))

  • 3503 Accesses

Abstract

The basic tools of multivariate matching are introduced, including the propensity score, distance matrices, calipers imposed using a penalty function, optimal matching, matching with multiple controls, and full matching. The tools are illustrated with a tiny example from genetic toxicology (nā€‰=ā€‰46), an example that is so small that one can keep track of individuals as they are matched using different techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cochran [12] discusses the relationship between the magnitude of a t-statistic for covariate imbalance and the coverage rate of a confidence interval for a treatment effect when no adjustment is made for the covariate. He concludes that problems begin to occur before the conventional 0.05 level of significance is reached, and that attention should be given to covariates exhibiting a t-statistic of 1.5 in absolute value.

  2. 2.

    The distance need not be, and typically is not, a distance in the sense that the word is used in metric space topology: it need not satisfy the triangle inequality.

  3. 3.

    Direct adjustment can be applied to pretty much anything, not just means and proportions. In particular, an empirical distribution function is little more than a sequence of proportions, and it is clear how to apply direct adjustment to proportions. From the weighted empirical distribution function, pretty much anything else can be computed; for instance, medians and quartiles. In [21], medians and quartiles from directly adjusted empirical distribution functions are used to construct directly adjusted boxplots. In the weighted empirical distribution function, the 44-year-old control in matched set #1 has mass 1āˆ•21, whereas the 63-year-old control in matched set #18 has mass 1āˆ•(4ā€‰Ć—ā€‰21).

  4. 4.

    This is true because, when the number of controls matched is the same, optimal matching with variable controls solves a less constrained optimization problem than matching with a fixed ratio, yet the two problems have the same objective function, so the optimum is never worse.

  5. 5.

    Although the proofs of these claims require some attention to detail, the underlying technique may be described briefly. Specifically, if a stratification is not a full match, then some stratum can be subdivided without increasing, and possibly decreasing, its average distance. Subdividing repeatedly terminates in a full match.

  6. 6.

    There is a sense in which Pitmanā€™s asymptotic relative efficiency is not well-defined (or is not meaningful) when there is a bias whose magnitude does not diminish with increasing sample size. See Chap. 16 where this subject is developed in a precise sense.

Bibliography

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River, NJ (1993)

    Google ScholarĀ 

  2. Austin, P.C., Stuart, E.A.: Optimal full matching for survival outcomes: a method that merits more widespread use. Stat. Med. 34, 3949ā€“3967 (2015)

    Google ScholarĀ 

  3. Avriel, M.: Nonlinear Programming. Prentice Hall, Upper Saddle River, New Jersey (1976)

    Google ScholarĀ 

  4. Bergstralh, E.J., Kosanke, J.L., Jacobsen, S.L.: Software for optimal matching in observational studies. Epidemiology 7, 331ā€“332 (1996)

    Google ScholarĀ 

  5. Bertsekas, D.P.: A new algorithm for the assignment problem. Math. Program. 21, 152ā€“171 (1981)

    Google ScholarĀ 

  6. Bertsekas, D.P., Tseng, P.: The Relax codes for linear minimum cost network flow problems. Ann. Oper. Res. 13, 125ā€“190 (1988)

    Google ScholarĀ 

  7. Bertsekas, D.P.: The auction algorithm for assignment and other network flow problems: A tutorial. Interfaces 20, 133ā€“149 (1990)

    ArticleĀ  Google ScholarĀ 

  8. Bertsekas, D.P.: Linear Network Optimization. MIT Press, Cambridge, MA (1991)

    Google ScholarĀ 

  9. Bertsekas, D.P.: Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont, MA (1998)

    Google ScholarĀ 

  10. Braitman, L.E., Rosenbaum, P.R.: Rare outcomes, common treatments: Analytic strategies using propensity scores. Ann. Intern. Med. 137, 693ā€“695 (2002)

    Google ScholarĀ 

  11. Carpaneto, G., Toth, P.: Algorithm 548: solution of the assignment problem [H]. ACM Trans. Math. Software 6, 104ā€“111 (1980)

    Google ScholarĀ 

  12. Cochran, W.G.: The planning of observational studies of human populations (with discussion). J. R. Stat. Soc. A 128, 234ā€“265 (1965)

    Google ScholarĀ 

  13. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998)

    Google ScholarĀ 

  14. Costa, M., Zhitkovich, A., Toniolo, P.: DNA-protein cross-links in welders: Molecular implications. Cancer Res. 53, 460ā€“463 (1993)

    Google ScholarĀ 

  15. Dellā€™Amico, M., Toth, P.: Algorithms and codes for dense assignment problems: the state of the art. Discrete Appl. Math. 100, 17ā€“48 (2000)

    Google ScholarĀ 

  16. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. Wiley, New York (2001)

    Google ScholarĀ 

  17. Gu, X.S., Rosenbaum, P.R.: Comparison of multivariate matching methods: Structures, distances, and algorithms. J. Comput. Graph Stat. 2, 405ā€“420 (1993)

    Google ScholarĀ 

  18. Hansen, B.B.: Full matching in an observational study of coaching for the SAT. J. Am. Stat. Assoc. 99, 609ā€“618 (2004)

    Google ScholarĀ 

  19. Hansen, B.B., Klopfer, S.O.: Optimal full matching and related designs via network flows. J. Comput. Graph. Stat. 15, 609ā€“627 (2006)

    Google ScholarĀ 

  20. Hansen, B.B.: Optmatch: Flexible, optimal matching for observational studies. R. News 7, 18ā€“24 (2007)

    Google ScholarĀ 

  21. Haviland, A.M., Nagin, D.S., Rosenbaum, P.R.: Combining propensity score matching and group-based trajectory analysis in an observational study. Psychol. Methods 12, 247ā€“267 (2007)

    Google ScholarĀ 

  22. Haviland, A.M., Nagin, D.S., Rosenbaum, P.R., Tremblay, R.: Combining group-based trajectory modeling and propensity score matching for causal inferences in nonexperimental longitudinal data. Dev. Psychol. 44, 422ā€“436 (2008)

    Google ScholarĀ 

  23. Heller, R., Manduchi, E., Small, D.: Matching methods for observational microarray studies. Bioinformatics 25, 904ā€“909 (2009)

    ArticleĀ  Google ScholarĀ 

  24. Ho, D., Imai, K., King, G., Stuart, E.A.: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199ā€“236 (2007)

    Google ScholarĀ 

  25. Kang, H., Kreuels, B., May, J., Small, D.S.: Full matching approach to instrumental variables estimation with application to the effect of malaria on stunting. Ann. Appl. Stat. 10, 335ā€“364 (2016)

    Google ScholarĀ 

  26. Karmanov, V.G.: Mathematical Programming. Mir, Moscow.

    Google ScholarĀ 

  27. Korte, B., Vygen, J.: Combinatorial Optimization, 5th edn. Springer, New York (2012)

    Google ScholarĀ 

  28. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83ā€“97 (1955)

    Google ScholarĀ 

  29. Lehmann, E.L.: Nonparametrics. Holden Day, San Francisco (1975)

    Google ScholarĀ 

  30. Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 12, 49ā€“55 (1936)

    Google ScholarĀ 

  31. Maindonald, J., Braun, J.: Data Analysis and Graphics Using R. Cambridge University Press, New York (2005)

    Google ScholarĀ 

  32. Ming, K., Rosenbaum, P.R: Substantial gains in bias reduction from matching with a variable number of controls. Biometrics 56, 118ā€“124 (2000)

    ArticleĀ  Google ScholarĀ 

  33. Ming, K., Rosenbaum, P.R.: A note on optimal matching with variable controls using the assignment algorithm. J. Comput. Graph. Stat. 10, 455ā€“463 (2001)

    Google ScholarĀ 

  34. R Development Core Team.: R: A Language and Environment for Statistical Computing. R Foundation, Vienna (2007). http://www.R-project.org

  35. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ (1982)

    Google ScholarĀ 

  36. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41ā€“55 (1983)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  37. Rosenbaum, P.R.: Conditional permutation tests and the propensity score in observational studies. J. Am. Stat. Assoc. 79, 565ā€“574 (1984)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  38. Rosenbaum, P.R., Rubin, D.B.: Constructing a control group by multivariate matched sampling methods that incorporate the propensity score. Am. Stat. 39, 33ā€“38 (1985)

    Google ScholarĀ 

  39. Rosenbaum, P.R.: Model-based direct adjustment. J. Am. Stat. Assoc. 82, 387ā€“394 (1987)

    ArticleĀ  Google ScholarĀ 

  40. Rosenbaum, P.R.: Optimal matching in observational studies. J. Am. Stat. Assoc. 84, 1024ā€“1032 (1989)

    ArticleĀ  Google ScholarĀ 

  41. Rosenbaum, P.R.: A characterization of optimal designs for observational studies. J. R. Stat. Soc. B 53, 597ā€“610 (1991)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  42. Rosenbaum, P.R.: Covariance adjustment in randomized experiments and observational studies (with Discussion). Stat. Sci. 17, 286ā€“327 (2002)

    ArticleĀ  Google ScholarĀ 

  43. Rosenbaum, P.R.: Observational Studies. Springer, New York (2002)

    BookĀ  Google ScholarĀ 

  44. Rosenbaum, P.R.: Impact of multiple matched controls on design sensitivity in observational studies. Biometrics 69, 118ā€“127 (2013)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  45. Rosenbaum, P.R.: Observation and Experiment: An Introduction to Causal Inference. Harvard University Press, Cambridge, MA (2017)

    BookĀ  Google ScholarĀ 

  46. Rosenbaum, P.R.: Modern algorithms for matching in observational studies. Ann. Rev. Stat. Appl. 7, 143ā€“176 (2020)

    ArticleĀ  Google ScholarĀ 

  47. Rubin, D.B.: Matching to remove bias in observational studies. Biometrics 29,159ā€“183 (1973)

    ArticleĀ  Google ScholarĀ 

  48. Rubin, D.B.: Bias reduction using Mahalanobis metric matching. Biometrics 36, 293ā€“298 (1980)

    ArticleĀ  Google ScholarĀ 

  49. Sekhon, J.S.: Opiates for the matches: Matching methods for causal inference. Annu. Rev. Polit. Sci. 12, 487ā€“508 (2009)

    Google ScholarĀ 

  50. Silber, J.H., Rosenbaum, P.R., Trudeau, M.E., Even-Shoshan, O., Chen, W., Zhang, X., Mosher, R.E.: Multivariate matching and bias reduction in the surgical outcomes study. Med. Care 39, 1048ā€“1064 (2001)

    Google ScholarĀ 

  51. Silber, J.H., Rosenbaum, P.R., Trudeau, M.E., Chen, W., Zhang, X., Lorch, S.L., Rapaport-Kelz, R., Mosher, R.E, Even-Shoshan, O.: Preoperative antibiotics and mortality in the elderly. Ann. Surg. 242, 107ā€“114 (2005)

    Google ScholarĀ 

  52. Silber, J.H., Rosenbaum, P.R., Polsky, D., Ross, R.N., Even-Shoshan, O., Schwartz, S., Armstrong, K.A., Randall, T.C.: Does ovarian cancer treatment and survival differ by the specialty providing chemotherapy? J. Clin. Oncol. 25, 1169ā€“1175 (2007)

    Google ScholarĀ 

  53. Silber, J.H. , Lorch, S.L. , Rosenbaum, P.R., Medoff-Cooper, B. , Bakewell-Sachs, S. , Millman, A. , Mi, L. , Even-Shoshan, O. , Escobar, G.E. : Additional maturity at discharge and subsequent health care costs. Health Serv. Res. 44, 444ā€“463 (2009)

    Google ScholarĀ 

  54. Silber, J.H., Rosenbaum, P.R., Clark, A.S., Giantonio, B.J., Ross, R.N., Teng, Y., Wang, M., Niknam, B.A., Ludwig, J.M., Wang, W., Even-Shoshan, O.: Characteristics associated with differences in survival among black and white women with breast cancer. J. Am. Med. Assoc. 310, 389ā€“397 (2013)

    Google ScholarĀ 

  55. Silber, J.H., Rosenbaum, P.R., McHugh, M.D., Ludwig, J.M., Smith, H.L., Niknam, B.A., Even-Shoshan, O., Fleisher, L.A., Kelz, R.R., Aiken, L.H.: Comparison of the value of nursing work environments in hospitals across different levels of patient risk. JAMA Surg. 151, 527ā€“536 (2016)

    Google ScholarĀ 

  56. Smith, H.L. : Matching with multiple controls to estimate treatment effects in observational studies. Sociol. Methodol. 27, 325ā€“353 (1997)

    Google ScholarĀ 

  57. Stuart, E.A. , Green, K.M. : Using full matching to estimate causal effects in nonexperimental studies: Examining the relationship between adolescent marijuana use and adult outcomes. Dev. Psychol. 44, 395ā€“406 (2008)

    Google ScholarĀ 

  58. Stuart, E.A.: Matching methods for causal inference. Stat. Sci. 25, 1ā€“21 (2010)

    Google ScholarĀ 

  59. Yu R., Rosenbaum P.R.: Directional penalties for optimal matching in observational studies. Biometrics 75, 1380ā€“1390 (2019)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

R. Rosenbaum, P. (2020). Basic Tools of Multivariate Matching. In: Design of Observational Studies. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-46405-9_9

Download citation

Publish with us

Policies and ethics