Skip to main content

Molecular Imaging of Inflammation and Infection

  • Chapter
  • First Online:
Clinical Nuclear Medicine

Abstract

In spite of advances in its prevention and treatment, infection remains a major cause of morbidity and mortality throughout the world. While symptoms, signs, and abnormal laboratory tests may suggest infection, the diagnosis is not always obvious, and imaging tests often are used for confirmation and localization. Radiologic imaging such as X-rays, computed tomography, magnetic resonance imaging, and ultrasonography depicts structural alterations in tissues and organs that are caused by a combination of the infection itself and the host’s response to the infection. Molecular imaging procedures utilizing radiopharmaceuticals, such as labeled leukocytes, gallium, and fluorodeoxyglucose, reflect the physiological changes that are part of the inflammatory process. Currently, gallium-67 citrate imaging is used for differentiating interstitial nephritis from acute tubular necrosis and as a substitute for 18F-FDG for indications such as sarcoid, spondylodiscitis, and fever of unknown origin, when the latter is not available. In vitro labeled leukocyte imaging is the imaging test of choice for most infections in the immunocompetent population. Over the past two decades, 18F-FDG has established itself as the molecular imaging agent of choice for fever of unknown origin, vasculitis, sarcoid, and spondylodiscitis. This chapter reviews the role of these agents in the detection and localization of inflammation and infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palestro C. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24:128–41.

    CAS  PubMed  Google Scholar 

  2. Palestro CJ. Scintigraphic diagnosis of inflammation and infection. In: Brant WE, Helms CA, editors. Fundamentals of diagnostic radiology. 4th ed. Philadelphia, PA: Lippincott, Williams and Wilkins; 2012. p. 1339–52.

    Google Scholar 

  3. Palestro CJ, Schultz BG, Horowitz M, Swyer AJ. Indium-111-leukocyte and gallium-67 imaging in acute sarcoidosis: report of two cases. J Nucl Med. 1992;33:2027–9.

    CAS  PubMed  Google Scholar 

  4. Sulavik SB, Spencer RP, Weed DA, Shapiro HR, Shiue ST, Castriotta RJ. Recognition of distinctive patterns of gallium-67 distribution in sarcoidosis. J Nucl Med. 1990;31:1909–14.

    CAS  PubMed  Google Scholar 

  5. Rohatgi PK, Singh R, Vieras F. Extrapulmonary localization of gallium in sarcoidosis. Clin Nucl Med. 1987;12:9–16.

    CAS  PubMed  Google Scholar 

  6. Raghavan M, Lazzeri E, Palestro CJ. Imaging of spondylodiscitis. Semin Nucl Med. 2018;48:131–47.

    PubMed  Google Scholar 

  7. Palestro CJ. Radionuclide imaging of osteomyelitis. Semin Nucl Med. 2015;45:32–46.

    PubMed  Google Scholar 

  8. Lievano P, De la Cueva L, Navarro P, et al. 67Ga SPECT/low-dose CT. A case report of spondylodiscitis and Schmorl's node. Rev Esp Med Nucl. 2009;28:288–90.

    CAS  PubMed  Google Scholar 

  9. Domínguez ML, Lorente R, Rayo JI, et al. SPECT-CT with (67)Ga-citrate in the management of spondylodiscitis. Rev Esp Med Nucl Imaging Mol. 2012;31:34–9.

    Google Scholar 

  10. Fuster D, Solà O, Soriano A, et al. A prospective study comparing whole-body FDG PET/CT to combined planar bone scan with 67Ga SPECT/CT in the diagnosis of spondylodiskitis. Clin Nucl Med. 2012;37:827–32.

    PubMed  Google Scholar 

  11. Tamm AS, Abele JT. Bone and gallium single-photon emission computed tomography-computed tomography is equivalent to magnetic resonance imaging in the diagnosis of infectious spondylodiscitis: a retrospective study. Can Assoc Radiol J. 2017;68:41–6.

    PubMed  Google Scholar 

  12. Border WA, Holbrook JH, Peterson MC. Gallium citrate Ga 67 scanning in acute renal failure. West J Med. 1995;162:477–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Linton AL, Richmond JM, Clark WF, et al. Gallium67 scintigraphy in the diagnosis of acute renal disease. Clin Nephrol. 1985;24:84–7.

    CAS  PubMed  Google Scholar 

  14. Joaquim AI, Mendes GEF, Patrícia FF, et al. Ga-67 scintigraphy in the differential diagnosis between acute interstitial nephritis and acute tubular necrosis: an experimental study. Nephrol Dial Transplant. 2010;25:3277–82.

    CAS  PubMed  Google Scholar 

  15. Love C, Palestro CJ. Radionuclide imaging of inflammation and infection in the acute care setting. Semin Nucl Med. 2013;43:102–13.

    PubMed  Google Scholar 

  16. Palestro CJ, Love C, Bhargava KK. Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging. 2009;53:105–23.

    CAS  PubMed  Google Scholar 

  17. Love C, Opoku-Agyemang P, Tomas MB, et al. Pulmonary activity on labeled leukocyte images: physiologic, pathologic, and imaging correlations. RadioGraphics. 2002;22:1385–93.

    PubMed  Google Scholar 

  18. Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Technol. 2004;32:47–57.

    PubMed  Google Scholar 

  19. Palestro CJ, Love C, Tronco GG, et al. Fever in the postoperative patient: role of radionuclide imaging in its diagnosis. Radiographics. 2000;20:1649–60.

    CAS  PubMed  Google Scholar 

  20. Lou L, Alibhai KN, Winkelaar GB, et al. 99mTc-WBC scintigraphy with SPECT/CT in the evaluation of arterial graft infection. Nucl Med Commun. 2010;31:411–6.

    PubMed  Google Scholar 

  21. Erba PA, Leo G, Sollini M, et al. Radiolabelled leucocyte scintigraphy versus conventional radiological imaging for the management of late, low-grade vascular prosthesis infections. Eur J Nucl Med Mol Imaging. 2014;41:357–68.

    CAS  PubMed  Google Scholar 

  22. Bar-Shalom R, Yefremov N, Guralnik L, et al. SPECT/CT using 67Ga and 111 in-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med. 2006;47:587–94.

    PubMed  Google Scholar 

  23. Erba PA, Sollini M, Conti U, et al. Radiolabeled WBC scintigraphy in the diagnostic workup of patients with suspected device-related infections. JACC Cardiovasc Imaging. 2013;6:1075–86.

    PubMed  Google Scholar 

  24. Litzler PY, Manrique A, Etienne M, et al. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med. 2010;51:1044–8.

    PubMed  Google Scholar 

  25. Erba PA, Conti U, Lazzeri E, et al. Added value of 99mTc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J Nucl Med. 2012;53:1235–43.

    CAS  PubMed  Google Scholar 

  26. Hyafil F, Rouzet F, Lepage L, et al. Role of radiolabelled leucocyte scintigraphy in patients with a suspicion of prosthetic valve endocarditis and inconclusive echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14:586–94.

    PubMed  Google Scholar 

  27. Palestro CJ, Love C, Tronco GG, et al. Combined labeled leukocyte and technetium-99m sulfur colloid marrow imaging for diagnosing musculoskeletal infection: principles, technique, interpretation, indications and limitations. RadioGraphics. 2006;26:859–70.

    PubMed  Google Scholar 

  28. Palestro CJ. Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med. 2016;57:1406–12.

    CAS  PubMed  Google Scholar 

  29. Glaudemans AW, De Vries EF, Vermeulen LE, et al. A large retrospective single centre study to define best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with 99mTc-HMPAO labelled leukocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging. 2013;40:1760–9.

    PubMed  Google Scholar 

  30. Palestro CJ, Love C. Nuclear medicine and diabetic foot infections. Semin Nucl Med. 2009;39:52–65.

    PubMed  Google Scholar 

  31. Przybylski MM, Holloway S, Vyce SD, Obando A. Diagnosing osteomyelitis in the diabetic foot: a pilot study to examine the sensitivity and specificity of Tc99mwhite blood cell-labelled single photon emission computed tomography/computed tomography. Int Wound J. 2016;13:382–9.

    PubMed  Google Scholar 

  32. Heiba SI, Kolker D, Mocherla B, et al. The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J Foot Ankle Surg. 2010;49:529–36.

    PubMed  Google Scholar 

  33. Heiba S, Kolker D, Ong L, et al. Dual-isotope SPECT/CT impact on hospitalized patients with suspected diabetic foot infection: saving limbs, lives, and resources. Nucl Med Commun. 2013;34:877–84.

    PubMed  Google Scholar 

  34. Filippi L, Uccioli L, Giurato L, et al. Diabetic foot infection: usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J Nucl Med. 2009;50:1042–6.

    PubMed  Google Scholar 

  35. Erdman WA, Buethe J, Bhore R, et al. Indexing severity of diabetic foot infection with 99mTc-WBC SPECT/CT hybrid imaging. Diabetes Care. 2012;35:1826–31.

    PubMed  PubMed Central  Google Scholar 

  36. Vouillarmet J, Morelec I, Thivolet C. Assessing diabetic foot osteomyelitis remission with white blood cell SPECT/CT imaging. Diabet Med. 2014;31:1093–9.

    CAS  PubMed  Google Scholar 

  37. Lazaga F, Van Asten SA, Nichols A, et al. Hybrid imaging with 99mTc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int Wound J. 2015;13:1158. https://doi.org/10.1111/iwj.12433.

    Article  PubMed  Google Scholar 

  38. Mulamba L’A H, Ferrant A, Leners N, et al. Indium-111 leucocyte scanning in the evaluation of painful hip arthroplasty. Acta Orthop Scand 1983;54:695–697.

    CAS  PubMed  Google Scholar 

  39. Palestro CJ, Kim CK, Swyer AJ, et al. Total hip arthroplasty: periprosthetic indium-111-labeled leukocyte activity and complementary technetium-99m-sulfur colloid imaging in suspected infection. J Nucl Med. 1990;31:1950–5.

    CAS  PubMed  Google Scholar 

  40. Palestro CJ, Swyer AJ, Kim CK, et al. Infected knee prostheses: diagnosis with in-111 leukocyte, Tc-99m sulfur colloid, and Tc-99m MDP imaging. Radiology. 1991;179:645–8.

    CAS  PubMed  Google Scholar 

  41. Joseph TN, Mujitaba M, Chen AL, et al. Efficacy of combined technetium-99m sulfur colloid/indium-111 leukocyte scans to detect infected total hip and knee arthroplasties. J Arthroplast. 2001;16:753–8.

    CAS  Google Scholar 

  42. Love C, Marwin SE, Tomas MB, et al. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection fluorine-18 FDG and indium-111-labeled leukocyte/technetium-99m-sulfur colloid marrow imaging. J Nucl Med. 2004;45:1864–71.

    PubMed  Google Scholar 

  43. El Espera I, Blondet C, Moullart V, et al. The usefulness of 99mTc sulfur colloid bone marrow scintigraphy combined with 111In leucocyte scintigraphy in prosthetic joint infection. Nucl Med Commun. 2004;25:171–5.

    PubMed  Google Scholar 

  44. Pill SG, Parvizi J, Tang PH, et al. Comparison of fluorodeoxyglucose positron emission tomography and (111)indium-white blood cell imaging in the diagnosis of periprosthetic infection of the hip. J Arthroplast. 2006;21:91–7.

    Google Scholar 

  45. Basu S, Kwee TC, Saboury B, et al. FDG-PET for diagnosing infection in hip and knee prostheses: prospective study in 221 prostheses and subgroup comparison with combined(111)in-labeled leukocyte/(99m)Tc-sulfur colloid bone marrow imaging in 88 prostheses. Clin Nucl Med. 2014;39:609–15.

    PubMed  PubMed Central  Google Scholar 

  46. Grate V, Feist M, Leaner S, et al. Detection of low-grade prosthetic joint infections using 99mTc-antigranulocyte SPECT/CT: initial clinical results. Eur J Nucl Med Mol Imaging. 2010;37:1751–9.

    Google Scholar 

  47. Tam HH, Balding B, Rahman F, et al. SPECT-CT in total hip arthroplasty. Clin Radiol. 2014;69:82–95.

    CAS  PubMed  Google Scholar 

  48. Al-Nathan K, Michopoulou S, Allie R, et al. Painful knee prosthesis: can we help with bone SPECT/CT? Nucl Med Commun. 2014;35:182–8.

    Google Scholar 

  49. Kim HO, Na SJ, Oh SJ, et al. Usefulness of adding SPECT/CT to 99mTc-hexamethylpropylene amine oxime (HMPAO)-labeled leukocyte imaging for diagnosing prosthetic joint infections. J Comput Assist Tomogr. 2014;38(2):313–9.

    PubMed  Google Scholar 

  50. Berber R, Henckel J, Khoo M, et al. Clinical usefulness of SPECT-CT in patients with an unexplained pain in metal on metal (MOM) total hip arthroplasty. J Arthroplast. 2015;30:687–94.

    Google Scholar 

  51. Mandegaran R, Agrawal K, Vijayanathan S. The value of 99mTc-MDP bone SPECT/CT in evaluation of patients with painful knee prosthesis. Nucl Med Commun. 2018;39:397–404.

    CAS  PubMed  Google Scholar 

  52. Palestro CJ, Glaudemans AWJM, Dierckx RAJO. Multiagent imaging of inflammation and infection. Clin Transl Imaging. 2013;1:385–96.

    PubMed  PubMed Central  Google Scholar 

  53. Meller J, Sahlmann CO, Scheel AK. 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med. 2007;48:35–45.

    CAS  PubMed  Google Scholar 

  54. Bleeker-Rovers CP, de Kleijn EM, et al. Clinical value of FDG PET in patients with fever of unknown origin and patients suspected of focal infection or inflammation. Eur J Nucl Med Mol Imaging. 2004;31:29–37.

    PubMed  Google Scholar 

  55. Petruzzi N, Shanthly N, Thakur M. Recent trends in soft-tissue infection imaging. Semin Nucl Med. 2009;39:115–23.

    PubMed  PubMed Central  Google Scholar 

  56. Palestro CJ, Love C. Nuclear medicine imaging in fever of unknown origin: the new paradigm. Curr Pharm Des. 2018;24:814–20.

    CAS  PubMed  Google Scholar 

  57. Kubota K, Nakamoto Y, Tamaki N, et al. FDG-PET for the diagnosis of fever of unknown origin: a Japanese multi-center study. Ann Nucl Med. 2011;25:355–64.

    PubMed  Google Scholar 

  58. Bleeker-Rovers CP, Vos FJ, Mudde AH, et al. A prospective multi-centre study of the value of FDG-PET as part of a structured diagnostic protocol in patients with fever of unknown origin. Eur J Nucl Med Mol Imaging. 2007;34:694–703.

    PubMed  Google Scholar 

  59. Takeuchi M, Dahabreh IJ, Nihashi T, et al. Nuclear imaging for classic fever of unknown origin: meta-analysis. J Nucl Med. 2016;57:1913–9.

    CAS  PubMed  Google Scholar 

  60. Kouijzer IJ, Bleeker-Rovers CP, Oyen WJ. FDG-PET in fever of unknown origin. Semin Nucl Med. 2013;43:333–9.

    PubMed  Google Scholar 

  61. Gafter-Gvili A, Raibman S, Grossman A, et al. [18F]FDG-PET/CT for the diagnosis of patients with fever of unknown origin. QJM. 2015;108:289–98.

    CAS  PubMed  Google Scholar 

  62. Crouzet J, Boudousq V, Lechiche C, et al. Place of (18)F-FDG-PET with computed tomography in the diagnostic algorithm of patients with fever of unknown origin. Eur J Clin Microbiol Infect Dis. 2012;31:1727–33.

    CAS  PubMed  Google Scholar 

  63. Buysschaert I, Vanderschueren S. Blockmans et al. contribution of (18)fluoro-deoxyglucose positron emission tomography to the work-up of patients with fever of unknown origin. Eur J Intern Med. 2004;15:151–6.

    PubMed  Google Scholar 

  64. Federici L, Blondet C, Imperiale A, Sibilia J, Pasquali JL, Pflumio F, et al. Value of (18)F-FDG-PET/CT in patients with fever of unknown origin and unexplained prolonged inflammatory syndrome: a single centre analysis experience. Int J Clin Pract. 2010;64:55–60.

    CAS  PubMed  Google Scholar 

  65. Vos FJ, Bleeker-Rovers CP, Kullberg BJ, et al. Cost-effectiveness of routine (18)F-FDG PET/CT in high-risk patients with gram-positive bacteremia. J Nucl Med. 2011;52:1673–8.

    PubMed  Google Scholar 

  66. Berrevoets MAH, Kouijzer IJE, Aarntzen EHJG, et al. 18F-FDG PET/CT optimizes treatment in Staphylococcus aureus bacteremia and is associated with reduced mortality. J Nucl Med. 2017;58:1504–10.

    CAS  PubMed  Google Scholar 

  67. Lorin MI, Feigin RD. Fever without localizing signs and fever of unknown origin. In: Feigin RD, Cherry JD, editors. Textbook of pediatric infectious diseases. 4th ed. Philadelphia, PA: WB Saunders; 1998. p. 820–30.

    Google Scholar 

  68. Steele RW, Jones SM, Lowe BA, Glasier CM. Usefulness of scanning procedures for diagnosis of fever of unknown origin in children. J Pediatr. 1991;119:526–30.

    CAS  PubMed  Google Scholar 

  69. Jasper N, Däbritz J, Frosch M, et al. Diagnostic value of [18F]-FDG PET/CT in children with fever of unknown origin or unexplained signs of inflammation. Eur J Nucl Med Mol Imaging. 2010;37:136–45.

    PubMed  Google Scholar 

  70. Blokhuis GJ, Bleeker-Rovers CP, Diender MG, et al. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression. Eur J Nucl Med Mol Imaging. 2014;41:1916–23.

    CAS  PubMed  Google Scholar 

  71. Chang L, Cheng MF, Jou ST, et al. Search of unknown fever focus using PET in critically ill children with complicated underlying diseases. Pediatr Crit Care Med. 2016;172:e58–65.

    Google Scholar 

  72. Sturm E, Rings EH, Scholvinck EH, et al. Fluordeoxyglucose positron emission tomography contributes to management of pediatric liver transplantation candidates with fever of unknown origin. Liver Transpl. 2006;12:1698–704.

    PubMed  Google Scholar 

  73. Besson FL, Chaumet-Riffaud P, Playe M, Noel N, Lambotte O, Goujard C, et al. Contribution of (18)F-FDG PET in the diagnostic assessment of fever of unknown origin (FUO): a stratification-based meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:1887–95.

    CAS  PubMed  Google Scholar 

  74. Sioka C, Assimakopoulos A, Fotopoulos A. The diagnostic role of (18)F fluorodeoxyglucose positron emission tomography in patients with fever of unknown origin. Eur J Clin Investig. 2015;45:601–8.

    CAS  Google Scholar 

  75. Dong MJ, Zhao K, Liu ZF, et al. A meta-analysis of the value of fluorodeoxyglucose-PET/PET-CT in the evaluation of fever of unknown origin. Eur J Radiol. 2011;80:834–44.

    PubMed  Google Scholar 

  76. Yan J, Zhang C, Niu Y, et al. The role of 18F-FDG PET/CT in infectious endocarditis: a systematic review and meta- analysis. Int J Clin Pharmacol Ther. 2016;54:337–42.

    CAS  PubMed  Google Scholar 

  77. Rouzet F, Chequer R, Benali K, et al. Respective performance of 18F-FDG PET and radiolabeled leukocyte scintigraphy for the diagnosis of prosthetic valve endocarditis. J Nucl Med. 2014;55:1980–5.

    CAS  PubMed  Google Scholar 

  78. Kouijzer IJE, Berrevoets MAH, Aarntzen EHJG. 18F-fluorodeoxyglucose positron-emission tomography combined with computed tomography as a diagnostic tool in native valve endocarditis. Nucl Med Commun. 2018;39:747–52.

    PubMed  Google Scholar 

  79. Pizzi MN, Roque A, Fernandez-Hidalgo N, et al. Improving the diagnosis of infective endocarditis in prosthetic valves and intracardiac devices with 18F-fluordeoxyglucose positron emission tomography computed tomography angiography initial results at an infective endocarditis referral center. Circulation. 2015;132:1113–26.

    PubMed  Google Scholar 

  80. Bensimhon L, Lavergne T, Hugonnet F, et al. Whole body [(18) F]fluorodeoxyglucose positron emission tomography imaging for the diagnosis of pacemaker or implantable cardioverter defibrillator infection: a preliminary prospective study. Clin Microbiol Infect. 2011;17:836–44.

    CAS  PubMed  Google Scholar 

  81. Sarrazin JF, Philippon F, Tessier M, et al. Usefulness of fluorine-18 positron emission tomography/computed tomography for identification of cardiovascular implantable electronic device infections. J Am Coll Cardiol. 2012;59:1616–25.

    PubMed  Google Scholar 

  82. Graziosi M, Nanni C, Lorenzini M, et al. Role of 18F-FDG PET/CT in the diagnosis of infective endocarditis in patients with an implanted cardiac device: a prospective study. Eur J Nucl Med Mol Imaging. 2014;41:1617–23.

    PubMed  Google Scholar 

  83. Dell’Aquila AM, Mastrobuoni S, Alles S, et al. Contributory role of fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device. Ann Thorac Surg. 2016;101:87–94.

    PubMed  Google Scholar 

  84. Mahmood M, Kendi AT, Farid S. Role of 18F-FDG PET/CT in the diagnosis of cardiovascular implantable electronic device infections: a meta-analysis. J Nucl Cardiol. 2017;26:958. https://doi.org/10.1007/s12350-017-1063-0.

    Article  PubMed  Google Scholar 

  85. Keidar Z, Engel A, Hoffman A, et al. Prosthetic vascular graft infection: the role of 18F-FDG PET/CT. J Nucl Med. 2007;48:1230–6.

    PubMed  Google Scholar 

  86. Sah BR, Husmann L, Mayer D, et al. Diagnostic performance of 18F-FDG-PET/CT in vascular graft infections. Eur J Vasc Endovasc Surg. 2015;49:455–64.

    PubMed  Google Scholar 

  87. Keidar Z, Pirmisashvili N, Leiderman M, et al. 18F-FDG uptake in noninfected prosthetic vascular grafts: incidence, patterns, and changes over time. J Nucl Med. 2014;55:392–5.

    CAS  PubMed  Google Scholar 

  88. Saleem BR, Pol RA, Slart RH, et al. 18F-Fluorodeoxyglucose positron emission tomography/CT scanning in diagnosing vascular prosthetic graft infection. Biomed Res Int. 2014;1:471971.

    Google Scholar 

  89. Bowles H, Ambrosioni J, Mestres G, et al. Diagnostic yield of 18F-FDG PET/CT in suspected diagnosis of vascular graft infection: a prospective cohort study. J Nucl Cardiol. 2018; https://doi.org/10.1007/s12350-018-1337-1.

    PubMed  Google Scholar 

  90. Husmann L, Sah BR, Scherrer A, et al. 18F-FDG PET/CT for therapy control in vascular graft infections: a first feasibility study. J Nucl Med. 2015;56:1024–9.

    PubMed  Google Scholar 

  91. Husmann L, Ledergerber B, Anagnostopoulos A, et al. The role of FDG PET/CT in therapy control of aortic graft infection. Eur J Nucl Med Mol Imaging. 2018; https://doi.org/10.1007/s00259-018-4069-1.

    PubMed  Google Scholar 

  92. Guhlmann A, Brecht-Krauss D, Suger G, et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology. 1998;206:749–54.

    CAS  PubMed  Google Scholar 

  93. de Winter F, van de Wiele C, Vogelaers D, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg. 2001;83-A:651–60.

    Google Scholar 

  94. Schiesser M, Stumpe KD, Trentz O, et al. Detection of metallic implant-associated infections with FDG PET in patients with trauma: correlation with microbiologic results. Radiology. 2003;226:391–8.

    PubMed  Google Scholar 

  95. Guhlmann A, Brecht-Krauss D, Suger G, et al. Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med. 1998;39:2145–52.

    CAS  PubMed  Google Scholar 

  96. Gratz S, Dorner J, Fischer U, Behr TM, et al. F-18-FDG hybrid PET in patients with suspected spondylitis. Eur J Nucl Med Mol Imaging. 2002;29:516–24.

    CAS  PubMed  Google Scholar 

  97. Ohtori S, Suzuki M, Koshi T, et al. 18F-fluorodeoxyglucose-PET for patients with suspected spondylitis showing Modic change. Spine. 2010;35:E1599–603.

    PubMed  Google Scholar 

  98. Stumpe KD, Zanetti M, Weishaupt D, et al. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol. 2002;179:1151–7.

    PubMed  Google Scholar 

  99. Seifen T, Rettenbacher L, Thaler C, et al. Prolonged back pain attributed to suspected spondylodiscitis. The value of 18F-FDG PET/CT imaging in the diagnostic work-up of patients. Nuklearmedizin. 2012;51:194–200.

    CAS  PubMed  Google Scholar 

  100. Fuster D, TomĂ¡s X, Mayoral M, et al. Prospective comparison of whole-body 18F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging. 2015;42:264–71.

    CAS  PubMed  Google Scholar 

  101. Skanjeti A, Penna D, Douroukas A, et al. PET in the clinical work-up of patients with spondylodiscitis: a new tool for the clinician? Q J Nucl Med Mol Imaging. 2012;56:569–76.

    CAS  PubMed  Google Scholar 

  102. Ioannou S, Chatziioannou S, Pneumaticos SG, Zormpala A, Sipsas NV. Fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan contributes to the diagnosis and management of brucellar spondylodiskitis. BMC Infect Dis. 2013;13:73.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakahara M, Ito M, Hattori N, et al. 18F-FDG-PET/CT better localizes active spinal infection than MRI for successful minimally invasive surgery. Acta Radiol. 2015;56:829–36.

    PubMed  Google Scholar 

  104. Nanni C, Boriani L, Salvadori C, et al. FDG PET/CT is useful for the interim evaluation of response to therapy in patients affected by haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging. 2012;39:1538–44.

    PubMed  Google Scholar 

  105. Kim SJ, Kim IJ, Suh KT, et al. Prediction of residual disease of spine infection using F-18 FDG PET/CT. Spine. 2009;34:2424–30.

    PubMed  Google Scholar 

  106. Riccio SA, Chu AK, Rabin HR, et al. Fluorodeoxyglucose positron emission tomography/computed tomography interpretation criteria for assessment of antibiotic treatment response in pyogenic spine infection. Can Assoc Radiol J. 2015;66:145–52.

    PubMed  Google Scholar 

  107. Dauchy FA, Dutertre A, Lawson-Ayay S, et al. Interest of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for the diagnosis of relapse in patients with spinal infection: a prospective study. Clin Microbiol Infect. 2016;22:438–43.

    PubMed  Google Scholar 

  108. Treglia G, Sadeghib R, Annunziata S, et al. Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: A systematic review and a meta-analysis. Foot. 2013;23:140–8.

    Google Scholar 

  109. Lauri C, Tamminga M, Glaudemans AWJM, et al. Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care. 2017;40:1111–20.

    PubMed  Google Scholar 

  110. Zhuang H, Duarte PS, Pourdehnad M, et al. The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med. 2001;42:44–8.

    CAS  PubMed  Google Scholar 

  111. Chacko TK, Zhuang H, Nakhoda KZ, et al. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun. 2003;24:615–24.

    CAS  PubMed  Google Scholar 

  112. García-Barrecheguren E, Rodríguez Fraile M, et al. FDG-PET: a new diagnostic approach in hip prosthetic replacement. Rev Esp Med Nucl. 2007;26:208–20.

    PubMed  Google Scholar 

  113. Delank KS, Schmidt M, Michael JW, et al. The implications of 18F-FDG PET for the diagnosis of endoprosthetic loosening and infection in hip and knee arthroplasty: results from a prospective, blinded study. BMC Musculoskelet Disord. 2006;7:20.

    PubMed  PubMed Central  Google Scholar 

  114. Reinartz P, Mumme T, Hermanns B, et al. Radionuclide imaging of the painful hip arthroplasty: positron-emission tomography versus triple-phase bone scanning. J Bone Joint Surg. 2005;87-B:465–70.

    Google Scholar 

  115. Stumpe KD, Notzli HP, Zanetti M, et al. FDG PET for differentiation of infection and aseptic loosening in total hip replacements: comparison with conventional radiography and three-phase bone scintigraphy. Radiology. 2004;231:333–41.

    PubMed  Google Scholar 

  116. Dumarey N, Egrise D, Blocklet D, et al. Imaging infection with 18F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med. 2006;47:625–32.

    PubMed  Google Scholar 

  117. Rini JN, Bhargava KK, Tronco GG, et al. PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection. Radiology. 2006;238:978–87.

    PubMed  Google Scholar 

  118. Aksoy SY, Asa S, Ozhan M, et al. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection. Eur J Nucl Med Mol Imaging. 2014;41:556–64.

    CAS  PubMed  Google Scholar 

  119. Bhattacharya A, Kochhar R, Sharma S, et al. PET/CT with 18F-FDG-labeled autologous leukocytes for the diagnosis of infected fluid collections in acute pancreatitis. J Nucl Med. 2014;55:1267–72.

    CAS  PubMed  Google Scholar 

  120. Bhargava KK, Gupta RK, Nichols KJ, et al. In-vitro human leukocyte labeling with 64Cu: an intraindividual comparison with 111In-oxine and 18F-FDG. Nucl Med Biol. 2009;36:545–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Fairclough M, Prenant C, Ellis B, et al. A new technique for the radiolabelling of mixed leukocytes with zirconium-89 for inflammation imaging with positron emission tomography. J Label Comp Radiopharm. 2016;59:270–6.

    CAS  Google Scholar 

  122. Locke LW, Chordia MD, Zhang Y, et al. A novel neutrophil-specific PET imaging agent: cFLFLFK-PEG-64Cu. J Nucl Med. 2009;50:790–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nanni C, Errani C, Boriani L, et al. 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med. 2010;51:1932–6.

    PubMed  Google Scholar 

  124. Vorster M, Maes A, Jacobs A, et al. Evaluating the possible role of 68Ga-citrate PET/CT in the characterization of indeterminate lung lesions. Ann Nucl Med. 2014;28:523–30.

    CAS  PubMed  Google Scholar 

  125. Foss CA, Sanchez-Bautista J, Jain SK. Imaging macrophage-associated inflammation. Semin Nucl Med. 2018;48:242–5.

    PubMed  PubMed Central  Google Scholar 

  126. Chen DL, Scherer PM, Palestro CJ. Clinical imaging. In: Jain S, editor. Imaging infections: from bench to bedside. New York, NY: Springer; 2017. p. 17–41.

    Google Scholar 

  127. Lazzeri E, Pauwels EKJ, Erba P, et al. Clinical feasibility of two-step streptavidin/111In-biotin scintigraphy in patients with suspected vertebral osteomyelitis. Eur J Nucl Med Mol Imaging. 2004;31:1505–11.

    PubMed  Google Scholar 

  128. Lazzeri E, Erba P, Perri M, et al. Clinical impact of SPECT/CT with in-111 biotin on the management of patients with suspected spine infection. Clin Nucl Med. 2010;35:12–7.

    PubMed  Google Scholar 

  129. Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014;7:545–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hiemstra PS, van den Barselaar MT, Roest M, et al. Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J Leukoc Biol. 1999;66:423–8.

    CAS  PubMed  Google Scholar 

  131. Lupetti A, Pauwels EK, Nibbering PH, et al. 99mTc-antimicrobial peptides: promising candidates for infection imaging. Q J Nucl Med. 2003;47:238–45.

    CAS  PubMed  Google Scholar 

  132. Ostovar A, Assadi M, Vahdat K, et al. A pooled analysis of diagnostic value of 99mTc-ubiquicidin (UBI) scintigraphy in detection of an infectious process. Clin Nucl Med. 2013;38:413–6.

    PubMed  Google Scholar 

  133. Ebenhan T, Chadwick N, Sathekge MM, et al. Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT. Nucl Med Biol. 2014;41:390–400.

    CAS  PubMed  Google Scholar 

  134. Ebenhan T, Zeevaart JR, Venter JD, et al. Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J Nucl Med. 2014;55:308–14.

    CAS  PubMed  Google Scholar 

  135. Mokaleng BB, Ebenhan T, Ramesh S, et al. Synthesis, 68Ga-radiolabeling, and preliminary in vivo assessment of a depsipeptide-derived compound as a potential PET/CT infection imaging agent. Biomed Res Int. 2015;2015:284354.

    PubMed  PubMed Central  Google Scholar 

  136. Boerman OC, Laverman P, Oyen WJFIAU. From reporter gene imaging to imaging of bacterial proliferation. Am J Nucl Med Mol Imaging. 2012;2:271–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Diaz LA, Foss CA, Thornton K, et al. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One. 2007;2(10):e1007.

    PubMed  PubMed Central  Google Scholar 

  138. Zhang XM, Zhang HH, McLeroth P, et al. [124I]FIAU: human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl Med Biol. 2016;43:273–9.

    CAS  PubMed  Google Scholar 

  139. [124I]FIAU-PET/CT scanning in diagnosing osteomyelitis in patients with diabetic foot; 2016. infection.clinicaltrials.gov/ct2/show/NCT01764919. Accessed 15 Jul 2018.

  140. Ordonez AA, Jain SK. Pathogen-specific bacterial imaging in nuclear medicine. Semin Nucl Med. 2018;48:182–94.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Palestro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palestro, C.J., Metter, D. (2020). Molecular Imaging of Inflammation and Infection. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics