Skip to main content

Debugging Quadrocopter Trajectories in Mixed Reality

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Abstract

Debugging and monitoring robotic applications is a very intricate and error-prone task. To this end, we propose a mixed-reality approach to facilitate this process along a concrete scenario. We connected the Microsoft HoloLens smart glass to the Robot Operating System (ROS), which is used to control robots, and visualize arbitrary flight data of a quadrocopter. Hereby, we display holograms correctly in the real world based on a conversion of the internal tracking coordinates into coordinates provided by a motion capturing system. Moreover, we describe the synchronization process of the internal tracking with the motion capturing. Altogether, the combination of the HoloLens and the external tracking system shows promising preliminary results. Moreover, our approach can be extended to directly manipulate source code through its mixed-reality visualization and offers new interaction methods to debug and develop robotic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. HoloLens-Rosbridge. https://github.com/roastedpork/hololens-rosbridge. Accessed 13 Feb 2019

  2. HoloLens Tracking-System. https://docs.microsoft.com/en-us/windows/mixed-reality/enthusiast-guide/tracking-system. Accessed 13 Feb 2019

  3. Optitrack. http://optitrack.com. Accessed 15 Feb 2019

  4. ROS Vizualization rviz. http://wiki.ros.org/rviz. Accessed 13 Feb 2019

  5. ROSBridge. http://wiki.ros.org/rosbridge_suite. Accessed 13 Feb 2019

  6. TCPROS. http://wiki.ros.org/ROS/TCPROS. Accessed 15 Feb 2019

  7. Bamburry, D.: Drones: Designed for product delivery. Des. Manag. Rev. 26(1), 40–48 (2015)

    Google Scholar 

  8. Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (yaml™) version 1.1. Technical report, p. 23 (2005). yaml.org

  9. Breckel, A., Tichy, M.: Live programming with code portals. In: Workshop on Live Programming Systems - LIVE 2016 (2016)

    Google Scholar 

  10. Gageik, N., MĂ¼ller, T., Montenegro, S.: Obstacle detection and collision avoidance using ultrasonic distance sensors for an autonomous quadrocopter. University of Wurzburg, Aerospace information Technologhy (Germany) Wurzburg, pp. 3–23 (2012)

    Google Scholar 

  11. Ghiringhelli, F., Guzzi, J., Di Caro, G.A., Caglioti, V., Gambardella, L.M., Giusti, A.: Interactive augmented reality for understanding and analyzing multi-robot systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 1195–1201. IEEE (2014)

    Google Scholar 

  12. Green, T.R.G., Petre, M., et al.: Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)

    Article  Google Scholar 

  13. Hehn, M., D’Andrea, R.: Quadrocopter trajectory generation and control. In: IFAC World Congress, vol. 18, pp. 1485–1491 (2011)

    Article  Google Scholar 

  14. Hoenig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., Ayanian, N.: Mixed reality for robotics. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5382–5387. IEEE (2015)

    Google Scholar 

  15. Leutert, F., Herrmann, C., Schilling, K.: A spatial augmented reality system for intuitive display of robotic data. In: Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction, pp. 179–180. IEEE Press (2013)

    Google Scholar 

  16. Magnenat, S., Ben-Ari, M., Klinger, S., Sumner, R.W.: Enhancing robot programming with visual feedback and augmented reality. In: Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education, pp. 153–158. ACM (2015)

    Google Scholar 

  17. Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Telemanipulator and Telepresence Technologies, vol. 2351, pp. 282–293. International Society for Optics and Photonics (1995)

    Google Scholar 

  18. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)

    Google Scholar 

  19. Ralston, S.E.: Augmented vision for survey work and machine control, US Patent 6,094,625, 25 July 2000

    Google Scholar 

  20. Ritz, R., MĂ¼ller, M.W., Hehn, M., D’Andrea, R.: Cooperative quadrocopter ball throwing and catching. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4972–4978. IEEE (2012)

    Google Scholar 

  21. Schobel, J., Pryss, R., Probst, T., Schlee, W., Schickler, M., Reichert, M.: Learnability of a configurator empowering end users to create mobile data collection instruments: usability study. JMIR mHealth uHealth 6(6) (2018)

    Article  Google Scholar 

  22. Stolaroff, J.: The need for a life cycle assessment of drone-based commercial package delivery. Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) (2014)

    Google Scholar 

  23. Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 55–61. ACM (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Hoppenstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoppenstedt, B. et al. (2019). Debugging Quadrocopter Trajectories in Mixed Reality. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11614. Springer, Cham. https://doi.org/10.1007/978-3-030-25999-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25999-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25998-3

  • Online ISBN: 978-3-030-25999-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics