Skip to main content

Towards Assessment of Behavioral Patterns in a Virtual Reality Environment

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11613))

Abstract

Virtual Reality (VR) is a powerful modern medium for immersive data visualization and interaction. However, only a few research efforts targeted the issue of complementing VR applications with features derived from real-time human behavior analysis in virtual environments. This paper addresses an interactive application for analysis of user behavior in a VR environment. In this work, real-time data communication is employed to collect data about the VR user’s location and actions in the virtual environment. To ensure the authenticity of interactions in the virtual environment, the VR application aims at achieving complete immersion. Our findings pertaining to behavioral patterns in immersive environment suggest that there is a potential in applying knowledge of user behavior models to improve the interactivity between the user and the virtual environment. Analysis of VR users’ behavioral models also complements studies typically performed by traditional survey techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, L., Wang, J., Chen, E., Yang, J., Wang, W.: Applications of virtual reality in turn-milling centre. In: 2008 IEEE International Conference on Automation and Logistics. IEEE, September 2008

    Google Scholar 

  2. Oculus VR, LLC. Oculus Rift (2017). Accessed 10 Feb 2019

    Google Scholar 

  3. HTC Corporation. HTC Vive (2017). Accessed 20 Jan 2019

    Google Scholar 

  4. Cordeil, M., Dwyer, T., Klein, K., Laha, B., Marriott, K., Thomas, B.H.: Immersive collaborative analysis of network connectivity: CAVE-style or head-mounted display? IEEE Trans. Visual Comput. Graph. 23(1), 441–450 (2017)

    Article  Google Scholar 

  5. Beidel, D.C., et al.: Trauma management therapy with virtual-reality augmented exposure therapy for combat-related PTSD: a randomized controlled trial. J. Anxiety Disord. 61, 64–74 (2019)

    Article  Google Scholar 

  6. Valmaggia, L.R., Day, F., Rus-Calafell, M.: Using virtual reality to investigate psychological processes and mechanisms associated with the onset and maintenance of psychosis: a systematic review. Soc. Psychiatry Psychiatr. Epidemiol. 51(7), 921–936 (2016)

    Article  Google Scholar 

  7. Yiannakopoulou, E., Nikiteas, N., Perrea, D., Tsigris, C.: Virtual reality simulators and training in laparoscopic surgery. Int. J. Surg. 13, 60–64 (2015)

    Article  Google Scholar 

  8. Tepljakov, A., Astapov, S., Petlenkov, E., Vassiljeva, K., Draheim, D.: Sound localization and processing for inducing synesthetic experiences in virtual reality. In: 2016 15th Biennial Baltic Electronics Conference (BEC), pp. 159–162, October 2016

    Google Scholar 

  9. Dormido, R., et al.: Development of a web-based control laboratory for automation technicians: the three-tank system. IEEE Trans. Educ. 51(1), 35–44 (2008)

    Article  Google Scholar 

  10. Tsaramirsis, G., et al.: Towards simulation of the classroom learning experience: virtual reality approach, October 2016

    Google Scholar 

  11. Kose, A., Tepljakov, A., Petlenkov, E.: Towards assisting interactive reality. In: De Paolis, L., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 569–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_41

    Chapter  Google Scholar 

  12. Kose, A., Tepljakov, A., Astapov, S., Draheim, D., Petlenkov, E., Vassiljeva, K.: Towards a synesthesia laboratory: real-time localization and visualization of a sound source for virtual reality applications. J. Commun. Softw. Syst. 14(1), 112–120 (2018)

    Google Scholar 

  13. Rajeswaran, P., Hung, N.-T., Kesavadas, T., Vozenilek, J., Kumar, P.: AirwayVR: learning endotracheal intubation in virtual reality. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, March 2018

    Google Scholar 

  14. Schöne, B., Wessels, M., Gruber, T.: Experiences in virtual reality: a window to autobiographical memory. Curr. Psychol. 38, 715–719 (2017)

    Article  Google Scholar 

  15. Pereira, C.E., Paladini, S., Schaf, F.M.: Control and automation engineering education: combining physical, remote and virtual labs. In: International Multi-Conference on Systems, Signals and Devices. IEEE, March 2012

    Google Scholar 

  16. Rozinaj, G., Vanco, M., Vargic, R., Minarik, I., Polakovic, A.: Augmented/virtual reality as a tool of self-directed learning. In: 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, June 2018

    Google Scholar 

  17. Ragan, E.D., Bowman, D.A., Kopper, R., Stinson, C., Scerbo, S., McMahan, R.P.: Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Trans. Visual Comput. Graph. 21(7), 794–807 (2015)

    Article  Google Scholar 

  18. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81(3), 231–268 (2001)

    Article  Google Scholar 

  19. Pham, D.-M.: Human identification using neural network-based classification of periodic behaviors in virtual reality. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, March 2018

    Google Scholar 

  20. Suhaimi, N.S., Yuan, C.T.B., Teo, J., Mountstephens, J.: Modeling the affective space of 360 virtual reality videos based on arousal and valence for wearable EEG-based VR emotion classification. In: 2018 IEEE 14th International Colloquium on Signal Processing and Its Applications (CSPA). IEEE, March 2018

    Google Scholar 

  21. Sutcliffe, A.G., Poullis, C., Gregoriades, A., Katsouri, I., Tzanavari, A., Herakleous, K.: Reflecting on the design process for virtual reality applications. Int. J. Hum.-Comput. Interact. 35(2), 168–179 (2018)

    Article  Google Scholar 

  22. Wang, W., Cheng, J., Guo, J.L.C.: Usability of virtual reality application through the lens of the user community. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. ACM Press (2019)

    Google Scholar 

  23. Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O.: CityVR: gameful software visualization. In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, September 2017

    Google Scholar 

  24. Sitzmann, V., et al.: Saliency in VR: how do people explore virtual environments? IEEE Trans. Visual Comput. Graph. 24(4), 1633–1642 (2018)

    Article  Google Scholar 

  25. Kose, A., Petlenkov, E., Tepljakov, A., Vassiljeva, K.: Virtual reality meets intelligence in large scale architecture. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 297–309. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_26

    Chapter  Google Scholar 

  26. Tallinn University of Technology. Official website of Re:creation Virtual and Augmented Reality Laboratory (2018). Accessed on 01 Mar 2018

    Google Scholar 

  27. Epic Games. Unreal Engine. Accessed 03 Jan 2019

    Google Scholar 

  28. Autodesk Maya Software. Features (2017). Accessed 25 Aug 2018

    Google Scholar 

  29. Dempsey, P.: The teardown: HTC vive virtual reality headset. Eng. Technol. 11(7), 80–81 (2016)

    Article  Google Scholar 

  30. Epic Games. Blueprints Visual Scripting (2019). Accessed 18 Jan 2019

    Google Scholar 

  31. Madhuri, D., Reddy, P.C.: Performance comparison of TCP, UDP and SCTP in a wired network. In: 2016 International Conference on Communication and Electronics Systems (ICCES), pp. 1–6. IEEE, October 2016

    Google Scholar 

  32. Combefis, S., Giannakopoulou, D., Pecheur, C., Feary, M.: A formal framework for design and analysis of human-machine interaction. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, October 2011

    Google Scholar 

  33. Coomer, N., Bullard, S., Clinton, W., Williams-Sanders, B.: Evaluating the effects of four VR locomotion methods. In: Proceedings of the 15th ACM Symposium on Applied Perception - SAP 2018. ACM Press (2018)

    Google Scholar 

  34. Begg, M., Dewhurst, D., Macleod, H.: Game-informed learning: applying computer game processes to higher education. Innovate 1 (2005)

    Google Scholar 

  35. Piromchai, P., Avery, A., Laopaiboon, M., Kennedy, G., O’Leary, S.: Virtual reality training for improving the skills needed for performing surgery of the ear, nose or throat. Cochrane Database Syst. Rev. (2015)

    Google Scholar 

  36. Ingrassia, P.L., et al.: Virtual reality and live scenario simulation: options for training medical students in mass casualty incident triage. Crit. Care 16(Suppl. 1), P479 (2012)

    Article  Google Scholar 

  37. Christopoulos, A., Conrad, M., Shukla, M.: Increasing student engagement through virtual interactions: how? Virtual Real. 22(4), 353–369 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kose, A., Tepljakov, A., Abel, M., Petlenkov, E. (2019). Towards Assessment of Behavioral Patterns in a Virtual Reality Environment. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11613. Springer, Cham. https://doi.org/10.1007/978-3-030-25965-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25965-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25964-8

  • Online ISBN: 978-3-030-25965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics