Skip to main content

Computed Tomographic Cardiovascular Imaging

  • Chapter
Cardiovascular Medicine

Abstract

Cardiac computed tomography (CT) is a robust technology for the noninvasive assessment of a spectrum of cardiovascular disease processes. This image modality has been used to provide assessment of atherosclerotic plaque burden and coronary artery disease risk through coronary calcium scoring. Although the technology has been clinically available for 20 years,1 cardiologists and even radiologists are largely unaware of its capabilities. This chapter reviews the current clinical uses and describes some of the potential for even greater utility in the near future. Advances in spatial and temporal resolution, electrocardiographic triggering methodology, and image reconstruction software have helped in the evaluation of coronary artery anatomy and vessel patency, providing the ability to noninvasively diagnose or rule out significant epicardial coronary artery disease. Cardiac CT allows the three-dimensional (3D) simultaneous imaging of additional cardiac structures including coronary veins, pulmonary veins, atria, ventricles, aorta, and thoracic arterial and venous structures, with definition of their spatial relationships for the comprehensive assessment of a variety of cardiovascular disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827–832.

    PubMed  CAS  Google Scholar 

  2. Lu B, Mao SS, Zhuang N, et al. Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol 2001;36:250–256.

    PubMed  CAS  Google Scholar 

  3. Becker CR, Kleffel T, Crispin A, et al. Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR 2001;176:1295–1298.

    PubMed  CAS  Google Scholar 

  4. Budoff MJ, Achenbach S, Duerinckx A. Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. J Am Coll Cardiol 2003;42:1867–1878.

    PubMed  Google Scholar 

  5. Nasir K, Budoff MJ, Post WS, et al. Electron Beam CT vs. Helical CT scans of coronary arteries: current utility and future directions. Am Heart J 2003:146:949–977.

    Google Scholar 

  6. Hunold P, Vogt FM, Schmermund A, et al. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 2003;226:145–152.

    PubMed  Google Scholar 

  7. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance imaging with conventional angiography. N Engl J Med 1993;328:828–832.

    PubMed  CAS  Google Scholar 

  8. Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB. Magnetic resonance imaging of coronary arteries: technique and preliminary results. Br Heart J 1993;70:315–326.

    PubMed  CAS  Google Scholar 

  9. Paschal CB, Haache EM, Adler LP. Coronary arteries: three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J MRI 1993;3:491–501.

    CAS  Google Scholar 

  10. Duerinckx AJ, Urman MK. Two dimensional coronary MR angiography: analysis of initial clinical results. Radiology 1994;193:731–738.

    PubMed  CAS  Google Scholar 

  11. Duerinckx AJ, Urman MK, Atkinson DJ, Simonetti OP, Sinha U, Lewis B. Limitations of MR coronary angiography. J MRI 19943;4:81.

    Google Scholar 

  12. Duerinckx AJ, Atkinson DP, Mintorovitch J, Simonetti OP, Vrman MK. Two-dimensional coronary MRA: limitations and artifacts. Eur Radiol 1996;6:312–325.

    PubMed  CAS  Google Scholar 

  13. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:1863–1869.

    PubMed  CAS  Google Scholar 

  14. Chernoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR 1997;169:93–99.

    PubMed  CAS  Google Scholar 

  15. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 1993;91:1800–1809.

    PubMed  CAS  Google Scholar 

  16. Eggen DA, Strong JP, McGill HC Jr. Coronary calcification. Relationship to clinically significant coronary lesions and race, sex, and topographic distribution. Circulation 1965;32:948–955.

    PubMed  CAS  Google Scholar 

  17. Mautner SL, Mautner GC, Froehlich J, et al. Coronary artery disease: prediction with in vitro electron beam CT. Radiology 1994;192:625–630.

    PubMed  CAS  Google Scholar 

  18. Schmermund A, Baumgart D, Gorge G, et al. Coronary artery calcium in acute coronary syndromes: a comparative study of electron-beam computed tomography, coronary angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina. Circulation 1997;96:1461–1469.

    PubMed  CAS  Google Scholar 

  19. Mintz GS, Pichard AD, Popma JJ, et al. Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol 1997;29:268–274.

    PubMed  CAS  Google Scholar 

  20. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–2162.

    PubMed  CAS  Google Scholar 

  21. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron beam computed tomography. N Engl J Med 1998;339:1972–1978.

    PubMed  CAS  Google Scholar 

  22. Budoff MJ, Mao S, Lu B, et al. Ability of calibration phantom to reduce the interscan variability in electron beam computed tomography. J Comput Assist Tomogr 2002;26(6):886–891.

    PubMed  Google Scholar 

  23. Wong ND, Budoff MJ, Pio J, Detrano RC. Coronary calcium and cardiovascular event risk: evaluation by age-and sex-specific quartiles. Am Heart J 2002;143:456–459.

    PubMed  Google Scholar 

  24. Achenbach S, Ropers D, Mohlenkamp S, et al. Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 2001;87:210–213.

    PubMed  CAS  Google Scholar 

  25. Mao S, Bakhsheshi H, Lu B, Liu SC, Oudiz RJ, Budoff MJ. Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring. Radiology 2001;220:707–711.

    PubMed  CAS  Google Scholar 

  26. Daniell AL, Wong ND, Friedman JD, et al. Reproducibility of coronary calcium measurements from multidetector computed tomography. J Am Coll Cardiol 2003;41(suppl A):456–457.

    Google Scholar 

  27. Budoff MJ, Lane KL, Bakhsheshi H, et al. Rates of progression of coronary calcification by electron beam computed tomography. Am J Cardiol 2000;86(1):8–11.

    PubMed  CAS  Google Scholar 

  28. Raggi P, Cooil B, Shaw L, et al. Progression of coronary calcification on serial electron beam tomography scanning is greater in patients with future myocardial infarction. Am J Cardiol 2003;92:827–829.

    PubMed  Google Scholar 

  29. Raggi P, Callister TQ, Shaw LJ. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol 2004;24(7):1272–1277.

    PubMed  CAS  Google Scholar 

  30. Baumgart D, Schmermund A, Goerge G, et al. Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol 1997;30:57–64.

    PubMed  CAS  Google Scholar 

  31. Mautner GC, Mautner SL, Froehlich J, et al. Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation. Radiology 1994;192:619–623.

    PubMed  CAS  Google Scholar 

  32. Budoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation 1996;93:898–904.

    PubMed  CAS  Google Scholar 

  33. Haberl R, Becker A, Leber A, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 2001;37:451–457.

    PubMed  CAS  Google Scholar 

  34. Guerci A, Spadaro L, Goodman KG, et al. Comparison of electron beam computed tomography scanning and conventional risk factor assessment for the prediction of angiographic coronary artery disease. J Am Coll Cardiol 1998;32:673–677.

    PubMed  CAS  Google Scholar 

  35. Schmermund A, Erbel R. Unstable coronary plaque and its relation to coronary calcium. Circulation 2001;104:1682–1687.

    PubMed  CAS  Google Scholar 

  36. Rumberger JA, Sheedy PF, Breen JF, Schwartz RS. Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis. J Am Coll Cardiol 1997;29:1542–1548.

    PubMed  CAS  Google Scholar 

  37. Budoff MJ, Diamond GA, Raggi P, et al. Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 2002;105:1791–1796.

    PubMed  Google Scholar 

  38. Shavelle DM, Budoff MJ, LaMont DH, Shavelle RM, Kennedy JM, Brundage BH. Exercise testing and electron beam computed tomography in the evaluation of coronary artery disease. J Am Coll Cardiol 2000;36:32–38.

    PubMed  CAS  Google Scholar 

  39. Kajinami K, Seki H, Takekoshi N, Mabuchi H. Noninvasive prediction of coronary atherosclerosis by quantification of coronary artery calcification using electron beam computed tomography: comparison with electrocardiographic and thallium exercise stress test results. J Am Coll Cardiol 1995;26:1209–1221.

    PubMed  CAS  Google Scholar 

  40. Lamont DH, Budoff MJ, Shavelle DM, Shavelle R, Brundage BH, Hagar JM. Coronary calcium scanning adds incremental value to patients with positive stress tests. Am Heart J 2002;143(5):861–867.

    PubMed  Google Scholar 

  41. Kannel WB, Schatzkin A. Sudden death: lessons from subsets in population studies. J Am Coll Cardiol 1985;5:141B–149B.

    PubMed  CAS  Google Scholar 

  42. Raggi P. Coronary calcium screening to improve risk stratification in primary prevention. J La State Med Soc 2002;154:314–318.

    PubMed  Google Scholar 

  43. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988;78:1157–1166.

    PubMed  CAS  Google Scholar 

  44. Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992;69:729–732.

    PubMed  CAS  Google Scholar 

  45. Roberts WC, Jones AA. Quantitation of coronary arterial narrowing at necropsy in sudden coronary death: analysis of 31 patients and comparison with 25 control subjects. Am J Cardiol 1979;44:39–45.

    PubMed  CAS  Google Scholar 

  46. Margolis JR, Chen JT, Kong Y, Peter RH, Behar VS, Kisslo JA. The diagnostic and prognostic significance of coronary artery calcification. A report of 800 cases. Radiology 1980;137:609–616.

    PubMed  CAS  Google Scholar 

  47. Georgiou D, Budoff MJ, Kaufer E, Kennedy JM, Lu B, Brundage BH. Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol 2001;38:105–110.

    PubMed  CAS  Google Scholar 

  48. Detrano R, Hsiai T, Wang S, et al. Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol 1996;27:285–290.

    PubMed  CAS  Google Scholar 

  49. Kennedy J, Shavelle R, Wang S, Budoff M, Detrano RC. Coronary calcium and standard risk factors in symptomatic patients referred for coronary angiography. Am Heart J 1998;135:696–702.

    PubMed  CAS  Google Scholar 

  50. Keelan PC, Bielak LF, Ashai K, et al. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation 2001;104:412–417.

    PubMed  CAS  Google Scholar 

  51. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301–1307.

    PubMed  CAS  Google Scholar 

  52. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000;36:1253–1260.

    PubMed  CAS  Google Scholar 

  53. Wong ND, Hsu JC, Detrano RC, Diamond G, Eisenberg H, Gardin JM. Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 2000;86:495–498.

    PubMed  CAS  Google Scholar 

  54. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004;291:210–215.

    PubMed  CAS  Google Scholar 

  55. Raggi P, Cooil B, Callister TQ. Use of electron beam tomography data to develop models for prediction of hard coronary events. Am Heart J 2001;141:375–382.

    PubMed  CAS  Google Scholar 

  56. Kondos GT, Hoff JA, Sevrukov A, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low-to intermediaterisk adults. Circulation 2003;107:2571–2576.

    PubMed  Google Scholar 

  57. Arad Y, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary risk factors, and atherosclerotic cardiovascular disease events. The St. Francis Heart Study. J Am Coll Cardiol 2005;46:158–165.

    PubMed  CAS  Google Scholar 

  58. Shaw LJ, Raggi P, Schisterman E, et al. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;28:826–833.

    Google Scholar 

  59. Grundy SM. Coronary plaque as a replacement for age as a risk factor in global risk assessment. Am J Cardiol 2001;88:8E–11E.

    PubMed  CAS  Google Scholar 

  60. O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 2000;36:326–340.

    PubMed  CAS  Google Scholar 

  61. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285:2486–2497.

    Google Scholar 

  62. Smith SC Jr, Amsterdam E, Balady GJ, et al. Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: tests for silent and inducible ischemia: Writing Group II. Circulation 2000;101:E12–16.

    PubMed  Google Scholar 

  63. Mosca L, Appel LJ, Benjamin EJ, et al. Evidence-based guidelines for cardiovascular disease prevention in women. Circulation 2004;109:672–693.

    PubMed  Google Scholar 

  64. Rumberger JA, Behrenbeck T, Breen JF, Sheedy PF 2nd. Coronary calcification by electron beam computed tomography and obstructive coronary artery disease: a model for costs and effectiveness of diagnosis as compared with conventional cardiac testing methods. J Am Coll Cardiol 1999;33:453–462.

    PubMed  CAS  Google Scholar 

  65. Nasir K, Redberg RF, Budoff MJ, Hui E, Post WS, Blumenthal RS. Utility of stress testing and coronary calcification measurement for detection of coronary artery disease in women. Arch Intern Med 2004;164:1610–1620.

    PubMed  Google Scholar 

  66. Budoff MJ, Shakooh S, Shavelle RM, Kim HT, French WJ. Electron beam tomography and angiography: sex differences. Am Heart J 2002;143(5):877–882.

    PubMed  Google Scholar 

  67. Laudon DA, Vukov LF, Breen JF, Rumberger JA, Wollan PC, Sheedy PF 2nd. Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med 1999;33:15–21.

    PubMed  CAS  Google Scholar 

  68. McLaughlin VV, Balogh T, Rich S. Utility of electron beam computed tomography to stratify patients presenting to the emergency room with chest pain. Am J Cardiol 1999;84:327–328.

    PubMed  CAS  Google Scholar 

  69. Budoff MJ, Shavelle DM, Lamont DH, et al. Usefulness of electron beam computed tomography scanning for distinguishing ischemic from nonischemic cardiomyopathy. J Am Coll Cardiol 1998;32:1173–1178.

    PubMed  CAS  Google Scholar 

  70. Mieres JH, Shaw LJ, Arai A, et al. The role of non-invasive testing in the clinical evaluation of women with suspected coronary artery disease: american heart association consensus statement. Circulation 2005;111:682–696.

    PubMed  Google Scholar 

  71. Greenland P, Abrams J, Aurigemma GP, et al. Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation 2000;101(1):E16–E22.

    PubMed  CAS  Google Scholar 

  72. Taylor AJ, Merz CN, Udelson JE. 34th Bethesda Conference: Executive summary—can atherosclerosis imaging techniques improve the detection of patients at risk for ischemic heart disease? J Am Coll Cardiol 2003;41(11):1860–1862.

    PubMed  Google Scholar 

  73. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110(2):227–239.

    PubMed  Google Scholar 

  74. Nakanishi T, Ito K, Imazu M, Yamakido M. Evaluation of coronary artery stenoses using electron-beam CT and multiplanar reformation. J Comput Assist Tomogr 1997;21:121–127.

    PubMed  CAS  Google Scholar 

  75. Achenbach S, Moshage W, Ropers D, Bachmann K. Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron beam CT of the coronary arteries. AJR 1998;170:895–899.

    PubMed  CAS  Google Scholar 

  76. Budoff MJ, Oudiz RJ, Zalace CP, et al. Intravenous three dimensional coronary angiography using contrast enhanced electron beam computed tomography. Am J Cardiol 1999;83:840–845.

    PubMed  CAS  Google Scholar 

  77. Reddy GP, Chernoff DM, Adams JR, Higgins CB. Coronary artery stenoses: assessment with contrast-enhanced electronbeam CT and axial reconstructions. Radiology 1998;208:167–172.

    PubMed  CAS  Google Scholar 

  78. Achenbach S, Moshage W, Ropers D, Nossen J, Daniel WG. Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary artery stenoses and occlusions. N Engl J Med 1998;339:1964–1971.

    PubMed  CAS  Google Scholar 

  79. Chernoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR 1997;169:93–99.

    PubMed  CAS  Google Scholar 

  80. Moshage WE, Achenbach S, Seese B, Bachmann K, Kirchgeorg M. Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology 1995;196:707–714.

    PubMed  CAS  Google Scholar 

  81. Achenbach S, Moshage W, Ropers D, Bachmann K. Comparison of vessel diameters in electron beam tomography and quantitative coronary angiography. Int J Card Imaging 1998;14:1–7; discussion 9.

    PubMed  CAS  Google Scholar 

  82. Lu B, Mao SS, Zhuang N, et al. Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol 2001;36:250–256.

    PubMed  CAS  Google Scholar 

  83. Mao S, Oudiz RJ, Bakhsheshi H, Liu SCK, Budoff MJ. Coronary artery motion and coronary artery imaging. J Comput Assist Tomogr 2000;24:253–258.

    PubMed  CAS  Google Scholar 

  84. Lu B, Shavelle DM, Mao SS, et al. Improved accuracy of noninvasive electron beam coronary angiography. Invest Radiol 2004;39(2):73–79.

    PubMed  Google Scholar 

  85. Budoff MJ, Lu B, Shinbane JS, et al. Methodology for improved detection of coronary stenoses with computed tomographic angiography. Am Heart J 2004;148(6):1085–1090.

    PubMed  Google Scholar 

  86. Budoff MJ, Shinbane JS, Oudiz RJ, et al. Comparison of coronary artery calcium screening image quality between C-150 and e-speed electron beam scanners. Acad Radiol 2005;12(3):309–312.

    PubMed  Google Scholar 

  87. Rasouli ML, Shavelle DM, French WJ, McKay CR, Budoff MJ. Assessment of coronary plaque morphology by contrast-enhanced computed tomographic angiography: comparison with intravascular ultrasound. Coron Artery Dis 2006;17:359–364.

    PubMed  Google Scholar 

  88. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 2001;103:2535–2538.

    PubMed  CAS  Google Scholar 

  89. Giesler T, Baum U, Ropers D, et al. Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR 2002;179:911–916.

    PubMed  Google Scholar 

  90. Nieman K, Rensing BJ, van Geuns RJ, et al. Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 2002;88:470–474.

    PubMed  CAS  Google Scholar 

  91. Budoff MJ. Non-invasive coronary angiography using computed tomography. Expert Rev Cardiovasc Ther 2005;3:123–132.

    PubMed  Google Scholar 

  92. Hoffmann U, Moselewski F, Cury RC, et al. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient versus segmentbased analysis. Circulation 2004;110(17):2638–2643. E-pub 2004; October 18.

    PubMed  Google Scholar 

  93. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107:664–666.

    PubMed  Google Scholar 

  94. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002;106:2051–2054.

    PubMed  Google Scholar 

  95. Bateman TM, Gray RJ, Whiting JS, Matloff JM, Berman DS, Forrester JS. Cine computed tomographic evaluation of aortocoronary bypass graft patency. J Am Coll Cardiol 1986;8:693–698.

    PubMed  CAS  Google Scholar 

  96. Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K. Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol 1997;79:856–861.

    PubMed  CAS  Google Scholar 

  97. Ha JW, Cho SY, Shim WH, et al. Noninvasive evaluation of coronary artery bypass graft patency using three-dimensional angiography obtained with contrast-enhanced electron beam CT. AJR 1999;172:1055–1059.

    PubMed  CAS  Google Scholar 

  98. Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen J. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol 2004;44(6):1224–1229.

    PubMed  Google Scholar 

  99. Achenbach S, Moshage W, Bachmann K. Detection of high-grade restenosis after PTCA using contrast-enhanced electron beam CT. Circulation 1997;96:2785–2788.

    PubMed  CAS  Google Scholar 

  100. Pump H, Moehlenkamp S, Sehnert C, et al. Electron-beam CT in the noninvasive assessment of coronary stent patency. Acad Radiol 1998;5:858–862.

    PubMed  CAS  Google Scholar 

  101. Lu B, Dai R, Bai H, et al. Detection and analysis of intracoronary artery stent after PTCA using contrast-enhanced threedimensional electron beam tomography. J Invasive Cardiol 2000;12:1–6.

    PubMed  CAS  Google Scholar 

  102. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991;84:1087–1099.

    PubMed  CAS  Google Scholar 

  103. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 1995;25:1479–1485.

    PubMed  CAS  Google Scholar 

  104. Schmermund A, Baumgart D, Adamzik M, et al. Comparison of electron-beam computed tomography and intracoronary ultrasound in detecting calcified and noncalcified plaques in patients with acute coronary syndromes and no or minimal to moderate angiographic coronary artery disease. Am J Cardiol 1998;81:141–146.

    PubMed  CAS  Google Scholar 

  105. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004;109:14–17.

    PubMed  Google Scholar 

  106. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 2001;103:2535–2538.

    PubMed  CAS  Google Scholar 

  107. Knollmann FD, Hidajat N, Felix R. CTA of the coronary arteries: comparison of radiation exposure with EBCT and multislice detector CT. Radiology 2000;217(P):364.

    Google Scholar 

  108. International Commission on Radiological Protection. Recommendation of the ICRP. ICRP Publication 60. Oxford: Pergamon Press, 1990.

    Google Scholar 

  109. Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation 2003;107:917–922.

    PubMed  Google Scholar 

  110. Flohr TG, Schoepf UJ, Kuettner A, et al. Advances in cardiac imaging with 16-section CT systems. Acad Radiol 2003;10(4):386–401.

    PubMed  Google Scholar 

  111. Trabold T, Buchgeister M, Kuttner A, et al. Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo 2003;175:1051–1055.

    PubMed  CAS  Google Scholar 

  112. Achenbach S, Moshage W, Ropers D, Bachmann K. Curved multiplanar reconstructions for the evaluation of contrastenhanced electron beam CT of the coronary arteries. AJR 1998;170:895–899.

    PubMed  CAS  Google Scholar 

  113. Ropers D, Moshage W, Daniel WG, Jessl J, Gottwik M, Achenbach S. Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol 2001;87:193–197.

    PubMed  CAS  Google Scholar 

  114. Baik HK, Budoff MJ, Lane KL, Bakhsheshi H, Brundage BH. Accurate measures of left ventricular ejection fraction using electron beam tomography: a comparison with radionuclide angiography, and cine angiography. Int J Card Imaging 2000;16:391–398.

    PubMed  CAS  Google Scholar 

  115. Rich S, Chomka EV, Stagl R, Shanes JG, Kondos GT, Brundage BH. Determination of left ventricular ejection fraction using ultrafast computed tomography. Am Heart J 1986;112:392–396.

    PubMed  CAS  Google Scholar 

  116. Rumberger JA, Behrenbeck T, Bell MR, et al. Determination of ventricular ejection fraction: a comparison of available imaging methods. The Cardiovascular Imaging Working Group. Mayo Clin Proc 1997;72:860–870.

    PubMed  CAS  Google Scholar 

  117. Reiter SJ, Rumberger JA, Feiring AJ, Stanford W, Marcus ML. Precision of measurements of right and left ventricular volume by cine computed tomography. Circulation 1986;74:890–900.

    PubMed  CAS  Google Scholar 

  118. Schmermund A, Rensing BJ, Sheedy PF, Rumberger JA. Reproducibility of right and left ventricular volume measurements by electron-beam CT in patients with congestive heart failure. Int J Card Imaging 1998;14:201–209.

    PubMed  CAS  Google Scholar 

  119. Feiring AJ, Rumberger JA, Reiter SJ, et al. Determination of left ventricular mass in dogs with rapid-acquisition cardiac computed tomographic scanning. Circulation 1985;72:1355–1364.

    PubMed  CAS  Google Scholar 

  120. Mousseaux E, Beygui F, Fornes P, et al. Determination of left ventricular mass with electron beam computed tomography in deformed, hypertrophic human hearts. Eur Heart J 1994;15:832–841.

    PubMed  CAS  Google Scholar 

  121. Feiring AJ, Rumberger JA. Ultrafast computed tomography analysis of regional radius-to-wall thickness ratios in normal and volume-overloaded human left ventricle. Circulation 1992;85:1423–1432.

    PubMed  CAS  Google Scholar 

  122. Gerber TC, Schmermund A, Reed JE, et al. Use of a new myocardial centroid for measurement of regional myocardial dysfunction by electron beam computed tomography: comparison with technetium-99m sestamibi infarct size quantification. Invest Radiol 2001;36:193–203.

    PubMed  CAS  Google Scholar 

  123. Rumberger JA, Weiss RM, Feiring AJ, et al. Patterns of regional diastolic function in the normal human left ventricle: an ultrafast computed tomographic study. J Am Coll Cardiol 1989;14:119.

    PubMed  CAS  Google Scholar 

  124. Gerber TC, Behrenbeck T, Allison T, Mullan BP, Rumberger JA, Gibbons RJ. Comparison of measurement of left ventricular ejection fraction by Tc-99m sestamibi first-pass angiography with electron beam computed tomography in patients with anterior wall acute myocardial infarction. Am J Cardiol 1999;83:1022–1026.

    PubMed  CAS  Google Scholar 

  125. Budoff MJ, Gillespie R, Georgiou D, et al. Comparison of exercise electron beam computed tomography and sestamibi in the evaluation of coronary artery disease. Am J Cardiol 1998;81:682–687.

    PubMed  CAS  Google Scholar 

  126. Hattori Y, Imazu M, Yamabe T, Yamakido M, Nakanishi T, Ito K. Comparative study of dobutamine stress electron-beam computed tomography and exercise thallium scintigraphy in the diagnosis of patients with suspected coronary artery disease. Jpn Circ J 1998;62(2):83–90.

    PubMed  CAS  Google Scholar 

  127. Maron MS, Olivotto I, Betocchi S, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 2003;348:295–303.

    PubMed  Google Scholar 

  128. Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 1995;26:1699–1708.

    PubMed  CAS  Google Scholar 

  129. Juergens KU, Wessling J, Fallenberg EM, Monnig G, Wichter T, Fischbach R. Multislice cardiac spiral CT evaluation of atypical hypertrophic cardiomyopathy with a calcified left ventricular thrombus. J Comput Assist Tomogr 2000;24:688–690.

    PubMed  CAS  Google Scholar 

  130. Funabashi N, Yoshida K, Komuro I. Thinned myocardial fibrosis with thrombus in the dilated form of hypertrophic cardiomyopathy demonstrated by multislice computed tomography. Heart 2003;89:858.

    PubMed  CAS  Google Scholar 

  131. Schulz-Menger J, Strohm O, Waigand J, Uhlich F, Dietz R, Friedrich MG. The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation 2000;101:1764–1766.

    PubMed  CAS  Google Scholar 

  132. Dery R, Lipton MJ, Garrett JS, Abbott J, Higgins CB, Schienman MM. Cine-computed tomography of arrhythmogenic right ventricular dysplasia. J Comput Assist Tomogr 1986;10:120–123.

    PubMed  CAS  Google Scholar 

  133. Corrado D, Thiene G, Nava A, Rossi L, Pennelli N. Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med 1990;89:588–596.

    PubMed  CAS  Google Scholar 

  134. di Cesare E. MRI assessment of right ventricular dysplasia. Eur Radiol 2003;13:1387–1393.

    PubMed  Google Scholar 

  135. Hamada S, Takamiya M, Ohe T, Ueda H. Arrhythmogenic right ventricular dysplasia: evaluation with electron-beam CT. Radiology 1993;187:723–727.

    PubMed  CAS  Google Scholar 

  136. Tada H, Shimizu W, Ohe T, et al. Usefulness of electron-beam computed tomography in arrhythmogenic right ventricular dysplasia. Relationship to electrophysiological abnormalities and left ventricular involvement. Circulation 1996;94:437–444.

    PubMed  CAS  Google Scholar 

  137. Lu B, Dai RP, Jing BL, et al. Electron beam tomography with three-dimensional reconstruction in the diagnosis of aortic diseases. J Cardiovasc Surg (Torino) 2000;41:659–668.

    CAS  Google Scholar 

  138. Stanford W. Computed tomography in the diagnosis of pericardial disease. In: Brundage BH, ed. Comparative Cardiac Imaging. Rockville, MD: Aspen, 1990:451–457.

    Google Scholar 

  139. Stanford W, Rooholamini SA, Galvin JR. Assessment of intracardiac masses and extracardiac abnormalities by ultrafast computed tomography. In: Marcus ML, Schelbert HR, Skorton DJ Wolf GL, eds. Cardiac Imaging. Philadelphia: WB Saunders, 1991:703.

    Google Scholar 

  140. Rooholamini SA, Stanford W. Ultrafast computed tomography in the diagnosis of aortic aneurysms and dissections. In: Stanford W, Rumberger J, eds. Ultrafast Computed Tomography in Cardiac Imaging: Principles and Practice. Mount Kisco, NY: Futura, 1992:287–310.

    Google Scholar 

  141. Rich S, Levitsky S, Brundage BH. Pulmonary hypertension from chronic pulmonary thromboembolism. Ann Intern Med 1989;108:425.

    Google Scholar 

  142. Moser KM, Auger WR, Fedullo PF. Chronic major-vessel thromboembolic pulmonary hypertension. Circulation 1990;81:1735.

    PubMed  CAS  Google Scholar 

  143. Galvin JR, Gingrich RD, Hoffman E, Kao SC, Stern EJ, Stanford W. Ultrafast computed tomography of the chest. Radiol Clin North Am 1994;32:775–793.

    PubMed  CAS  Google Scholar 

  144. Stanford W, Reiners TJ, Thompson BH, et al. Contrast enhanced thin slice ultrafast computed tomography for the detection of small pulmonary emboli in the pig. Invest Radiol 1994;29:184–187.

    PubMed  CAS  Google Scholar 

  145. Kuriyama K, Gamsu G, Stern RG, et al. CT determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol 1984;19:16.

    PubMed  CAS  Google Scholar 

  146. Farmer DW, Lipton MJ, Webb WR, Ringertz H, Higgins CB. Computed tomography in congenital heart disease. J Comput Assist Tomogr 1984;8:677–687.

    PubMed  CAS  Google Scholar 

  147. Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 1996;276:199–204.

    PubMed  CAS  Google Scholar 

  148. Frescura C, Basso C, Thiene G, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol 1998;29:689–695.

    PubMed  CAS  Google Scholar 

  149. Li W, Ferrett C, Henein M. Images in cardiovascular medicine. Anomalous coronary arteries by electron beam angiography. Circulation 2003;107:2630.

    PubMed  Google Scholar 

  150. Ropers D, Moshage W, Daniel WG, Jessl J, Gottwik M, Achenbach S. Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol 2001;87:193–197.

    PubMed  CAS  Google Scholar 

  151. Post JC, van Rossum AC, Bronzwaer JG, et al. Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 1995;92:3163–3171.

    PubMed  CAS  Google Scholar 

  152. Fernandes F, Alam M, Smith S, Khaja F. The role of transesophageal echocardiography in identifying anomalous coronary arteries. Circulation 1993;88:2532–2540.

    PubMed  CAS  Google Scholar 

  153. Kersting-Sommerhoff B, Higgins CB: Magnetic resonance of congenital heart disease. In: Brundage BH, ed. Comparative Cardiac Imaging. Rockville, MD: Aspen, 1990:493–502.

    Google Scholar 

  154. AboulHosn J, Shavelle DM, Budoff M, Criley JM. Electron beam angiography in adults with congenital heart disease. Cathet Cardiovasc Intervent 2004;27(12):702.

    Google Scholar 

  155. Duerinckx AJ, Urman MK, Atkinson DJ, Simonetti OP, Sinha U, Lewis B. Limitations of MR coronary angiography. J MRI 1994;4:81.

    Google Scholar 

  156. Kawano T, Ishii M, Takagi J, et al. Three-dimensional helical computed tomographic angiography in neonates and infants with complex congenital heart disease. Am Heart J 2000;139:654–660.

    PubMed  CAS  Google Scholar 

  157. Garrett J, Jaschke W, Aherne T, et al. Quantitation of intracardiac shunts by cine-CT. J Comput Assist Tomogr 1988;12:82.

    PubMed  CAS  Google Scholar 

  158. Choi BW, Park YH, Choi JY, et al. Using electron beam CT to evaluate conotruncal anomalies in pediatric and adult patients. AJR 2001;177:1045–1049.

    PubMed  CAS  Google Scholar 

  159. Chen SJ, Li YW, Wang JK, et al. Three-dimensional reconstruction of abnormal ventriculoarterial relationship by electron beam CT. J Comput Assist Tomogr 1998;22:560–568.

    PubMed  CAS  Google Scholar 

  160. Lim C, Kim WH, Kim SC, Lee JY, Kim SJ, Kim YM. Truncus arteriosus with coarctation of persistent fifth aortic arch. Ann Thorac Surg 2002;74:1702–1704.

    PubMed  Google Scholar 

  161. Taneja K, Sharma S, Kumar K, Rajani M. Comparison of computed tomography and cineangiography in the demonstration of central pulmonary arteries in cyanotic congenital heart disease. Cardiovasc Intervent Radiol 1996;19:97–100.

    PubMed  CAS  Google Scholar 

  162. Choe KO, Hong YK, Kim HJ, et al. The use of high-resolution computed tomography in the evaluation of pulmonary hemodynamics in patients with congenital heart disease: in pulmonary vessels larger than 1 mm in diameter. Pediatr Cardiol 2000;21:202–210.

    PubMed  CAS  Google Scholar 

  163. Chen SJ, Wang JK, Li YW, Chiu IS, Su CT, Lue HC. Validation of pulmonary venous obstruction by electron beam computed tomography in children with congenital heart disease. Am J Cardiol 2001;87:589–593.

    PubMed  CAS  Google Scholar 

  164. Haramati LB, Glickstein JS, Issenberg HJ, Haramati N, Crooke GA. MR imaging and CT of vascular anomalies and connections in patients with congenital heart disease: significance in surgical planning. Radiographics 2002;22:337–347;discussion 348–349.

    PubMed  Google Scholar 

  165. Kaemmerer H, Stern H, Fratz S, Prokop M, Schwaiger M, Hess J. Imaging in adults with congenital cardiac disease (ACCD). Thorac Cardiovasc Surg 2000;48:328–335.

    PubMed  CAS  Google Scholar 

  166. Becker C, Soppa C, Fink U, et al. Spiral CT angiography and 3D reconstruction in patients with aortic coarctation. Eur Radiol 1997;7:1473–1477.

    PubMed  CAS  Google Scholar 

  167. Gerber TC, Sheedy PF, Bell MR, et al. Evaluation of the coronary venous system using electron beam computed tomography. Int J Cardiovasc Imaging 2001;17:65–75.

    PubMed  CAS  Google Scholar 

  168. Schaffler GJ, Groell R, Peichel KH, Rienmuller R. Imaging the coronary venous drainage system using electron-beam CT. Surg Radiol Anat 2000;22:35–39.

    PubMed  CAS  Google Scholar 

  169. Shinbane JS, Girsky MJ, Mao S, Budoff MJ. Thebesian valve imaging with electron beam CT angiography: implications for resynchronization therapy. Pacing Clin Electrophysiol 2004;27(11):1566–1567.

    PubMed  Google Scholar 

  170. Chugh SS, Blackshear JL, Shen WK, Hammill SC, Gersh BJ. Epidemiology and natural history of atrial fibrillation: clinical implications. J Am Coll Cardiol 2001;37:371–378.

    PubMed  CAS  Google Scholar 

  171. Schwartzman D, Kuck KH. Anatomy-guided linear atrial lesions for radiofrequency catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol 1998;21:1959–1978.

    PubMed  CAS  Google Scholar 

  172. Yang M, Akbari H, Reddy GP, Higgins CB. Identification of pulmonary vein stenosis after radiofrequency ablation for atrial fibrillation using MRI. J Comput Assist Tomogr 2001;25:34–35.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Budoff, M.J. (2007). Computed Tomographic Cardiovascular Imaging. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics