Skip to main content

Cardiovascular Magnetic Resonance Imaging

  • Chapter
Cardiovascular Medicine
  • 268 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pennell DJ, Sechtem UP, Higgins CB, et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel Report. J Cardiovasc Magn Reson 2004;6:727–765.

    PubMed  Google Scholar 

  2. Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU. Coronary artery disease: assessment with a comprehensive MR imaging protocol—initial results. Radiology 2002;225:300–307.

    PubMed  Google Scholar 

  3. Foo TK, Ho VB, Saranathan M, et al. Feasibility of integrating high-spatial resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 2005;235:1025–1030.

    PubMed  Google Scholar 

  4. Pohost GM, Kim RJ, Kramer CM, Manning WJ. Task Force 12: Training in advanced cardiovascular imaging for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 2006;47:910–914.

    PubMed  Google Scholar 

  5. Pohost GM, Higgins CB, Grist T, et al. Guidelines for credentialing in cardiovascular magnetic resonance (CMR). J Card Magn Resonan 2000;2:233–234.

    Google Scholar 

  6. Weinreb JC, Larson PA, Woodard PK, et al. American College of Radiology Clinical Statement on Noninvasive Cardiac Imaging. Radiology 2005;235:723–727.

    PubMed  Google Scholar 

  7. Budoff MJ, Cohen MC, Garcia MJ, et al. ACCF/AHA clinical competence statement on cardiac imaging with computed tomography and magnetic resonance. J Am Coll Cardiol 2005;46:383–402.

    PubMed  Google Scholar 

  8. Balaban RS. The physics of image generation by magnetic resonance. In: Manning WJ, Pennell DJ, eds. Cardiovascular Magnetic Resonance. Philadelphia: Churchill Livingstone, 2002:3–17.

    Google Scholar 

  9. Edelman RR, Hesselink JR, Zlatkin MB, eds. Clinical Magnetic Resonance Imaging. Philadelphia: Elsevier-Saunders, 2006.

    Google Scholar 

  10. Edelman RR. Contrast-enhanced MR imaging of the heart: overview of the literature. Radiology 2004;232:653–668.

    PubMed  Google Scholar 

  11. Goyen M, Debatin JF. Gadopentetate dimeglumine-enhanced three-dimensional MR-angiography: dosing, safety, and efficacy. J Magn Reson Imaging 2004;19:261–273.

    PubMed  Google Scholar 

  12. Sam AD, Morasch MD, Collins J, et al. Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surgery 2003;38:313–318.

    Google Scholar 

  13. Hundley WG, Meshack BM, Willett DL, et al. Comparison of quantitation of left ventricular volume, ejection fraction, and cardiac output in patients with atrial fibrillation by cine magnetic resonance imaging versus invasive measurements. Am J Cardiol 1996;78:1119–1123.

    PubMed  CAS  Google Scholar 

  14. Kerr AB, Pauly JM, Hu BS, et al. Real-time interactive MRI on a conventional scanner. Magn Reson Med 1997;38:355–367.

    PubMed  CAS  Google Scholar 

  15. Shellock FG. Reference Manual for Magnetic Resonance Safety, Implants, and Devices—2005. Philadelphia: WB Saunders, 2005.

    Google Scholar 

  16. Kramer CM, Rogers WJ, Pakstis DL. Absence of adverse outcomes after magnetic resonance imaging early after stent placement for acute myocardial infarction: a preliminary study. J Cardiovasc Magn Reson 2000;2:257–261.

    PubMed  CAS  Google Scholar 

  17. Gimbel JR, Johnson D, Levine PA, Wilkoff BL. Safe performance of magnetic resonance imaging on five patients with permanent cardiac pacemakers. PACE 1996;19:913–919.

    PubMed  CAS  Google Scholar 

  18. Martin ET, Coman JA, Shellock FG, et al. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 2004:43:1315–1324.

    PubMed  Google Scholar 

  19. Roguin A, Zviman MM, Meininger GR, et al. Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in-vitro and in-vivo assessment of safety and function at 1.5T. Circulation 2004;110:475–482.

    PubMed  Google Scholar 

  20. Nienaber CA, von Kodolitsch Y, Nicolas V, et al. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 1993;328:1:1–9.

    PubMed  CAS  Google Scholar 

  21. Laissy JP, Blanc F, Soyer P, et al. Thoracic aortic dissection: diagnosis with transesophageal echocardiography versus MR imaging. Radiology 1995;194:331–316.

    PubMed  CAS  Google Scholar 

  22. Goldfarb JW, Holland AE, Edelman RR. Single breath-hold multi-slap and CINE cardiac-synchronized gadolinium-enhanced three-dimensional angiography. Magn Reson Imaging 2001;17:434–451.

    Google Scholar 

  23. Prince MR, Narasimham DL, Jacoby WT, et al. Threedimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR 1996;166:1387–1397.

    PubMed  CAS  Google Scholar 

  24. Krinsky GA, Reuss PM, Lee VS, Carbognin G, Rofsky NM. Thoracic aorta: comparison of single-dose breath-hold and double-dose non-breath-hold gadolinium-enhanced three dimensional MR angiography. AJR 1999;173:145–150.

    PubMed  CAS  Google Scholar 

  25. Murray JG, Manisali M, Flamm SD, et al. Intramural hematoma of the thoracic aorta: MR image findings and their prognostic implications. Radiology 1997;204:349–355.

    PubMed  CAS  Google Scholar 

  26. Keren A, Kim CB, Hu BS, et al. Accuracy of biplane and multiplane transesophageal echocardiography in diagnosis of typical acute aortic dissection and intramural hematoma. J Am Coll Cardiol 1996;28:627–636.

    PubMed  CAS  Google Scholar 

  27. Sommer T, Fehski W, Holzknecht N, et al. Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology 1996;199:347–352.

    PubMed  CAS  Google Scholar 

  28. Cesare ED, Giordana AV, Cerone G, et al. Comparative evaluation of TEE, conventional MRI and contrast-enhanced 3D breath-hold MRA in the post-operative follow-up of dissecting aneurysms. Int J Card Imaging 2000;16:135–147.

    PubMed  CAS  Google Scholar 

  29. Oshinski JN, Parks WJ, Markou CP, et al. Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol 1996;28:1818–1826.

    PubMed  CAS  Google Scholar 

  30. Hatabu H, Gaa J, Kim D, et al. Pulmonary perfusion and angiography: evaluation with breath-hold enhanced threedimensional fast imaging steady-state precession MR imaging with short TR and TE. AJR 1996;167:653–655.

    PubMed  CAS  Google Scholar 

  31. Meaney JF, Weg JG, Chenevert TL, et al. Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med 1997;336:1422–1427.

    PubMed  CAS  Google Scholar 

  32. Stern EJ, Graham C, Gamsu G, et al. Pulmonary artery dissection: MR findings. J Comput Assist Tomogr 1992;16:481–483.

    PubMed  CAS  Google Scholar 

  33. Dill T, Neumann T, Ekinci O, et al. Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced threedimensional magnetic resonance imaging. Circulation 2003;107:845–850.

    PubMed  Google Scholar 

  34. Hauser TH, Yeon SB, McClennen S, et al. A method for the determination of proximal pulmonary vein size using contrast enhanced magnetic resonance angiography. J Cardiovasc Magn Reson 2004;6:927–936.

    PubMed  Google Scholar 

  35. Kato R, Lickfett L, Meininger G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 2003;107:2004–2010.

    PubMed  Google Scholar 

  36. Hauser TH, Yeon SB, McClennen S, et al. Subclinical pulmonary vein narrowing following ablation for atrial fibrillation. Heart 2005;91:672–673.

    PubMed  CAS  Google Scholar 

  37. Peters DC, Wylie J, Hauser TH, et al. Detection of pulmonary vein and left atrial scar after catheter ablation using 3D navigator-gated delayed enhancement magnetic resonance imaging — initial experience. Radiology 2006 (in press).

    Google Scholar 

  38. Chuang ML, Hibberd MG, Salton CJ, et al. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 2000;35:477–484.

    PubMed  CAS  Google Scholar 

  39. Caiani EG, Corsi C, Zamorano J, et al. Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2005;18:779–788.

    PubMed  Google Scholar 

  40. Burgstahler C, Heuschmid M, Rothfuss J-K, et al. Noninvasive evaluation of global left ventricular myocardial function with ECG-gated 16-slice multidetector computed tomography in comparison with magnetic resonance. Circulation 2004;110:III-573–574 (abstr).

    Google Scholar 

  41. Cranney GB, Lotan CS, Dean L, Baxley W, et al. Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging: validation by calibrated ventricular angiography. Circulation 1990 82:154–163.

    PubMed  CAS  Google Scholar 

  42. Mogelvang J, Stokholm KH, Saunamaki K, Reimer A, et al. Assessment of left ventricular volumes by magnetic resonance in comparison with radionuclide angiography, contrast angiography and echocardiography. Eur Heart J 1992;13:1677–1683.

    PubMed  CAS  Google Scholar 

  43. Sakuma H, Fujita N, Foo TKF, et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 1993;188:377–380.

    PubMed  CAS  Google Scholar 

  44. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90:29–34.

    PubMed  Google Scholar 

  45. Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance. J Am Coll Cardiol 2005;46:101–105.

    PubMed  Google Scholar 

  46. Harrity P, Patel A, Bianco J, Subramanian R. Improved diagnosis and characterization of postinfarction left ventricular pseudoaneurysm by cardiac magnetic resonance imaging. Clin Cardiol 1991;14:603–606.

    PubMed  CAS  Google Scholar 

  47. Bellenger NG, Burgess M, Ray SG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by two-dimensional echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Eur Heart J 2000;21:1387–1396.

    PubMed  CAS  Google Scholar 

  48. Johnson DB, Foster RE, Barilla F, et al. Angiotensin-converting enzyme inhibitor therapy affects left ventricular mass in patients with ejection fraction >40% after acute myocardial infarction. J Am Coll Cardiol 1997;29:49–54.

    PubMed  CAS  Google Scholar 

  49. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–542.

    PubMed  Google Scholar 

  50. McNamara MT, Higgins CB. Magnetic resonance imaging of chronic myocardial infarctions in man. AJR 1986;146:315–320.

    PubMed  CAS  Google Scholar 

  51. Mollet NR, Dymarkowski S, Volders W, et al. Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation 2002;106:2873–2876.

    PubMed  Google Scholar 

  52. Srichai MB, Junor C, Rodriguez L, et al. Imaging and pathologic characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathologic validation. Circulation 2004;110:III-404 (abstr).

    Google Scholar 

  53. Grothues F, Moon JC, Bellenger NG, et al. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 2004;147:218–223.

    PubMed  Google Scholar 

  54. Fayad ZA, Ferrari VA, Kraitchman DL, et al. Right ventricular regional function using MR tagging: normals versus chronic pulmonary hypertension. Magn Reson Med 1998;39:116–123.

    PubMed  CAS  Google Scholar 

  55. Kramer CM, Rogers WJ, Theobald TM, et al. Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation 1996;94:660–666.

    PubMed  CAS  Google Scholar 

  56. Roest AA, Kunz P, Lamb HJ, et al. Biventricular response to supine physical exercise in young adults assessed with ultrafast magnetic resonance imaging. Am J Cardiol 2001;87:601–605.

    PubMed  CAS  Google Scholar 

  57. Nagel E, Lehmkuhl HB, Bocksch W, et al. noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high dose dobutamine stress MRI: comparison with dobutamine echocardiography. Circulation 1999;99:763–770.

    PubMed  CAS  Google Scholar 

  58. Hundley WG, Hamilton CA, Thomas MS, et al. utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 1999;100:1697–1702.

    PubMed  CAS  Google Scholar 

  59. Schalla S, Klein C, Paetsch I, et al. Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wall motion abnormalities in patients with coronary arterial disease. Radiology 2002;224:845–851.

    PubMed  Google Scholar 

  60. Paetsch I, Jahnke C, Wahl A, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004;110:835–842.

    PubMed  CAS  Google Scholar 

  61. Hundley WG, Morgan TM, Neagle CM, et al. Magnetic resonance imaging determination of cardiac prognosis. Circulation 2002:106:2328–2333.

    PubMed  Google Scholar 

  62. Kuijpers D, Ho KY, van Dijkman PR, et al. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 2003;107:1592–1597.

    PubMed  Google Scholar 

  63. Al-Saadi N, Nagel E, Gross M, et al. Non-invasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000;101:1379–1383.

    PubMed  CAS  Google Scholar 

  64. Wilke N, Simm C, Zhang J, et al. Contrast enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993;29:485–497.

    PubMed  CAS  Google Scholar 

  65. Epstein FH, London JF, Peters DC, et al. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47:482–491.

    PubMed  Google Scholar 

  66. Wolff SD, Schwitter J, Coulden R, et al. Myocardial first-pass perfusion magnetic resonance imaging. A multicenter doseranging study. Circulation 2004;110:732–737.

    PubMed  CAS  Google Scholar 

  67. Panting JR, Gatehouse PD, Yang GZ, et al. Echo planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT. J Magn Reson Imaging 2001;13:192–200.

    PubMed  CAS  Google Scholar 

  68. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001;103:2230–2235.

    PubMed  CAS  Google Scholar 

  69. Al-Saadi N, Nagel E, Gross M, et al. Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 2000;36:1557–1564.

    PubMed  CAS  Google Scholar 

  70. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome-X detected by cardiovascular magnetic resonance imaging. N Engl J Med 2002;346:1948–1953.

    PubMed  Google Scholar 

  71. Hunold P, Vogt FM, Schmermund A, et al. Radiation exposure during cardiac CT: effective doses at multidetector row CT and electron-beam CT. Radiology 2003;226:145–152.

    PubMed  Google Scholar 

  72. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826–833.

    PubMed  Google Scholar 

  73. Hoffman U, Moselewski F, Cury RC, et al. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary disease in patients at high risk for coronary artery disease. Circulation 2004;110:2638–2643.

    Google Scholar 

  74. Maintz D, Ozgun M, Hoffmeier A, Botnar R, Fischbach R, Heindel W. Comparison of whole heart coronary MR angiography and coronary CT angiography [abstr]. Radiology 2004;(suppl):273.

    Google Scholar 

  75. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 1993;328:828–832.

    PubMed  CAS  Google Scholar 

  76. Duerinckx AJ, Urman MK. Two-dimensional coronary MR angiography: analysis of initial clinical results. Radiology 1994;193:731–738.

    PubMed  CAS  Google Scholar 

  77. Pennell DJ, Bogren HG, Keegan J, Firmin DN, Underwood SR. Assessment of coronary artery stenosis by magnetic resonance imaging. Heart 1996;75:127–133.

    PubMed  CAS  Google Scholar 

  78. Sommer T, Hackenbroch M, Hofer U, Meyer C, Flacke S, Schild H. Submillimeter 3D coronary MR angiography with real-time navigator correction in 112 patients with suspected coronary artery disease. J Cardiovasc Magn Reson 2001;4:28 (abstr).

    Google Scholar 

  79. Bogaert J, Kuzo R, Dymarkowski S, et al. Coronary artery imaging with real-time navigator three-dimensional turbofield-echo MR coronary angiography: initial experience. Radiology 2003;226:707–716.

    PubMed  Google Scholar 

  80. Botnar RM, Stiuber M, Danias PG, et al. Improved coronary artery definition with T2-weighted, free breathing, three dimensional coronary MRA. Circulation 1999;99:3139–3148.

    PubMed  CAS  Google Scholar 

  81. Jahnke C, Paetsch I, Schnackenburg B, et al. Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology 2004:232:669–676.

    PubMed  Google Scholar 

  82. Plein S, Jones TR, Ridgway JP, Sivananthan MU. Threedimensional coronary MR angiography performed with subjectspecific cardiac acquisition windows and motion-adapted respiratory gating. AJR 2003;180:505–512.

    PubMed  Google Scholar 

  83. Kefer J, Coch E, Legros G, et al. Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 2005;46:92–100.

    PubMed  Google Scholar 

  84. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenosis. N Engl J Med 2001;345:1863–1869.

    PubMed  CAS  Google Scholar 

  85. Hauser TH, Yeon SB, Appelbaum E, et al. Discrimination of ischemic vs. non-ischmemic cardiomyopathy among patients with heart failure using combined coronary MRI and delayed enhancement CMR. J Cardiovasc Magn Resonan 2005;7:94 (abstr).

    Google Scholar 

  86. Maintz D, Aepfelbacher FC, Kissinger KV, et al. Coronary magnetic resonance angiography: Comparison of quantitative and qualitative data among four techniques. AJR 2004;182:515–521.

    PubMed  Google Scholar 

  87. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 2003;50:1223–1228.

    PubMed  Google Scholar 

  88. Ichikawa Y, Sakuma H, Makino K, et al. Diagnostic accuracy of whole heart coronary magnetic resonance angiography for the detection of significant coronary stenosis in patients with suspected coronary artery disease. J Cardiovasc Magn Reson 2005;7:60 (abstr).

    Google Scholar 

  89. Sommer T, Hackenbroch M, Hofer U, et al. Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 2005:234:718–725.

    PubMed  Google Scholar 

  90. Hundley WG, Clarke GD, Landau C, et al. Noninvasive determination of infarct artery patency by cine magnetic resonance angiography. Circulation 1995;91:1347–1353.

    PubMed  CAS  Google Scholar 

  91. White RD, Caputo GR, Mark AS, Modin GW, Higgins CB. Coronary artery bypass graft patency: noninvasive evaluation with MR imaging. Radiology 1987;164:681–686.

    PubMed  CAS  Google Scholar 

  92. Rubinstein RI, Askenase AD, Thickman D, Feldman MS, Agarwal JB, Helfhant RH. Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts. Circulation 1987;76:786–791.

    PubMed  CAS  Google Scholar 

  93. Aurigemma GP, Reichek N, Axel L, Schiebler M, Harris C, Kressel HY. Noninvasive determination of coronary artery bypass graft patency by cine magnetic resonance imaging. Circulation. 1989;80:1595–1602.

    PubMed  CAS  Google Scholar 

  94. Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA. Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation 1996;93:660–666.

    PubMed  CAS  Google Scholar 

  95. Vrachliotis TG, Bis KG, Aliabadi D, Shetty AN, Safian R, Simonetti O. Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. AJR 1997;168:1073–1080.

    PubMed  CAS  Google Scholar 

  96. Langerak SE, Vliegen HW, de Roos A, et al. Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation 2002;105:328–333.

    PubMed  Google Scholar 

  97. Langerak SE, Kunz P, Vliegen HW, et al. MR flow mapping in coronary artery bypass grafts: a validation study with Doppler flow measurements. Radiology 2002;222:127–135.

    PubMed  Google Scholar 

  98. Duerinckx AJ, Atkinson D, Hurwitz R, et al. Coronary MR angiography after coronary stent placement. AJR 1995;165:662–664.

    PubMed  CAS  Google Scholar 

  99. Fieno DS, Kim RJ, Chen EL, et al. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000;36:1985–1991.

    PubMed  CAS  Google Scholar 

  100. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003;361:374–379.

    PubMed  Google Scholar 

  101. Mahrholdt H, Wagner A, Holly TA, et al. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 2002;106:2322–2327.

    PubMed  CAS  Google Scholar 

  102. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;16:1445–1453.

    Google Scholar 

  103. Schwartzman PR, Srichai MB, Grimm RA, et al. Nonstress delayed-enhancement magnetic resonance imaging of the myocardium predicts improvement of function after revascularization for chronic ischemic heart disease. Am Heart J 2003;146:535–541.

    Google Scholar 

  104. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 2002;106;1083–1089.

    PubMed  Google Scholar 

  105. Perin EC, Silva GV, Sarmento-Leite R, et al. Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation 2002;106:957–961.

    PubMed  Google Scholar 

  106. Kuhl HP, Beek AM, van der Weerdt AP, et al. Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18) F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2003;41:1341–1348.

    PubMed  Google Scholar 

  107. John AS, Dreyfus GD, Pennell DJ. Images in cardiovascular medicine. Reversible wall thinning in hibernation predicted by cardiovascular magnetic resonance. Circulation 2005;111:e24–25.

    PubMed  Google Scholar 

  108. James O, Kim HW, Weinsaft J, et al. Demonstration and prediction of the potential reversible nature of thinned myocardium by CMR. J Cardiovasc Magn Resonance 2005;7:69–70 (abstr).

    Google Scholar 

  109. Bello D, Fieno DS, Kim RJ, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 2005;45:1104–1108.

    PubMed  Google Scholar 

  110. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualization of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 2001;357:21–28.

    PubMed  CAS  Google Scholar 

  111. Choudhury L, Mahrholdt H, Wagner A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002;40:2156–2164.

    PubMed  Google Scholar 

  112. Mood JC, Reed E, Sheppard MA, et al. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004;43:2260–2264.

    Google Scholar 

  113. van Dockum WG, ten Cate FJ, ten Berg JM, et al. Myocardial infarction after percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: evaluation by contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 2004;43:27–34.

    PubMed  Google Scholar 

  114. Moon JC, Sachdev B, Elkington AG, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease: evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003:34:2151–2155.

    Google Scholar 

  115. Vignaux O, Dhote R, Duboc D, et al. Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1 year follow-up study. Chest 2002;122:1895–1901.

    PubMed  Google Scholar 

  116. Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 2004;109:1250–1258.

    PubMed  Google Scholar 

  117. Friedrich MG, Strohm O, Schulz-Menger J, et al. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 1998;97:1802–1809.

    PubMed  CAS  Google Scholar 

  118. Smedema JP, van Paassen P, van Kroonenburgh MJ, Snoep G, Crijns HJ, Tervaert JW. Cardiac involvement of Churg-Strauss syndrome demonstrated by magnetic resonance imaging. Clin Exp Rheumatol 2004;22:S75–78.

    PubMed  CAS  Google Scholar 

  119. Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005;111:186–193.

    PubMed  Google Scholar 

  120. McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium enhanced cardiovascular magnetic resonance. Circulation 2003;108:54–59.

    PubMed  CAS  Google Scholar 

  121. Bello D, Shah DJ, Farah GM, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 2003;108:1945–1953.

    PubMed  CAS  Google Scholar 

  122. Kramer CM, Reichek N, Ferrari VA, et al. Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation 1994;90:186–194.

    PubMed  CAS  Google Scholar 

  123. Amano Y, Takayama M, Amano M, Kumazaki T. MRI of cardiac morphology and function after percutaneous transluminal septal myocardial ablation for hypertrophic obstructive cardiomyopathy. AJR 2004;182:523–527.

    PubMed  Google Scholar 

  124. Johnston DL, Rice L, Vick GW 3rd, et al. Assessment of tissue iron overload by nuclear magnetic resonance imaging. Am J Med 1989;87:40–47.

    PubMed  CAS  Google Scholar 

  125. Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2* magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001;22:2171–2179.

    PubMed  CAS  Google Scholar 

  126. Carlson MD, White RD, Trohman RG, et al. Right ventricular outflow tract ventricular tachycardia: detection of previously unrecognized anatomic abnormalities using cine magnetic resonance imaging. J Am Coll Cardiol 1994;24:720–727.

    PubMed  CAS  Google Scholar 

  127. Globits S, Kreiner G, Frank H, et al. Significance of morphological abnormalities detected by MRI in patients undergoing successful ablation of right ventricular outflow tract tachycardia. Circulation 1997;96:2633–2640.

    PubMed  CAS  Google Scholar 

  128. Tandri H, Saranathan M, Rodriguez ER, et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 2005;45:98–103.

    PubMed  Google Scholar 

  129. Kupfahl C, Honold M, Meinhardt G, et al. Evaluation of aortic stenosis by cardiovascular magnetic resonance imaging: comparison with established routine clinical techniques. Heart 2004;90:293–301.

    Google Scholar 

  130. Caruthers SD, Lin SJ, Brown P, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation 2003;108:2236–2243.

    PubMed  Google Scholar 

  131. Djavidani B, Debl K, Lenhart M, et al. Planimetry of mitral valve stenosis by magnetic resonance imaging. J Am Coll Cardiol 2005;45:2048–2053.

    PubMed  Google Scholar 

  132. Lin SJ, Brown PA, Watkins MP, et al. Quantification of stenotic mitral valve area with magnetic resonance imaging and comparison with Doppler ultrasound. J Am Coll Cardiol 2004;44:133–137.

    PubMed  Google Scholar 

  133. Higgins CB, Wagner S, Kondo C, Suzuki J, Caputo GR. Evaluation of valvular heart disease with cine gradient echo magnetic resonance imaging. Circulation 1991;84:I198–207.

    PubMed  CAS  Google Scholar 

  134. Suzuki J, Caputo GR, Kondo C, Higgins CB. Cine MR imaging of valvular heart disease: display and imaging parameters affect the size of the signal void caused by valvular regurgitation. AJR 1990;155:723–727.

    PubMed  CAS  Google Scholar 

  135. Semelka RC, Shoenut JP, Wilson ME, et al. Cardiac masses: signal intensity features on spin-echo, gradient-echo, gadolinium-enhanced spin-echo and TurboFLASH images. J Magn Reson Imaging 1992;2:415–420.

    PubMed  CAS  Google Scholar 

  136. Levine RA, Weyman AE, Dinsmore RE, et al. Noninvasive tissue characterization: diagnosis of lipomatous hypertrophy of the atrial septum by nuclear magnetic resonance imaging. J Am Coll Cardiol 1986;7:688–692.

    PubMed  CAS  Google Scholar 

  137. Sechtem U, Tscholakoff D, Higgins CB. MRI of the normal pericardium. AJR 1986;147:239–244.

    PubMed  CAS  Google Scholar 

  138. Masui T, Finck S, Higgins CB. Constrictive pericarditis and restrictive cardiomyopathy: evaluation with MR imaging. Radiology 1992;182:369–373.

    PubMed  CAS  Google Scholar 

  139. Talreja DR, Edwards WD, Danielson GK, et al. Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation 2003;108:1852–1857.

    PubMed  Google Scholar 

  140. Kojima S, Yamada N, Goto Y. Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging [letter]. N Engl J Med 1999;341:373–374.

    PubMed  CAS  Google Scholar 

  141. Hundley WG, Li HF, Lange RA, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phasedifference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation 1995;91:2955–2960.

    PubMed  CAS  Google Scholar 

  142. McConnell MV, Ganz P, Selwyn AP, et al. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation 1995;92:3158–3162.

    PubMed  CAS  Google Scholar 

  143. Post JC, van Rossum AC, Bronzwaer JG, et al. Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 1995;92:3163–3171.

    PubMed  CAS  Google Scholar 

  144. Vliegen HW, Doornbos J, de Roos A, Jukema JW, Bekedam MA, van der Wall EE. Value of fast gradient echo magnetic resonance angiography as an adjunct to coronary arteriography in detecting and confirming the course of clinically significant coronary artery anomalies. Am J Cardiol 1997;79:773–776.

    PubMed  CAS  Google Scholar 

  145. Taylor AM AM, Thorne SA, Rubens MB, et al. Coronary artery imaging in grown-up congenital heart disease: complementary role of MR and x-ray coronary angiography. Circulation 2000;101:1670–1678.

    PubMed  CAS  Google Scholar 

  146. McGee KP, Debbins JP, Boskamp EB, et al. Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages. J Magn Reson Imaging 2004;18:291–297.

    Google Scholar 

  147. Sodickson DK, McKenzie CA, Ohliger MA, Yeh EN, Price MD. Recent advances in image reconstruction, coil sensitivity calibration, and coil array design for SMASH and generalized parallel MRI. MAGMA 2002;13:158–163.

    PubMed  Google Scholar 

  148. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Non-invasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2000;102:2582–2587.

    PubMed  CAS  Google Scholar 

  149. Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterization guided by MRI in children and adults with congenital heart disease. Lancet 2003;362:1877–1882.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Manning, W.J. (2007). Cardiovascular Magnetic Resonance Imaging. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics