Skip to main content

Modeling and Analyzing Yield, Burn-In and Reliability for Semiconductor Manufacturing: Overview

  • Reference work entry
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The demand for proactive techniques to model yield and reliability and to deal with various infant mortality issues are growing with increased integrated circuit (IC) complexity and new technologies toward the nanoscale. This chapter provides an overview of modeling and analysis of yield and reliability with an additional burn-in step as a fundamental means for yield and reliability enhancement.

After the introduction, the second section reviews yield modeling. The notions of various yield components are introduced. The existing models, such as the Poisson model, compound Poisson models and other approaches for yield modeling, are introduced. In addition to the critical area and defect size distributions on the wafers, key factors for accurate yield modeling are also examined. This section addresses the issues in improving semiconductor yield including how clustering may affect yield.

The third section reviews reliability aspects of semiconductors such as the properties of failure mechanisms and the typical bathtub failure rate curve with an emphasis on the high rate of early failures. The issues for reliability improvement are addressed.

The fourth section discusses several issues related to burn-in. The necessity for and effects of burn-in are examined. Strategies for the level and type of burn-in are examined. The literature on optimal burn-in policy is reviewed. Often percentile residual life can be a good measure of performance in addition to the failure rate or reliability commonly used.

The fifth section introduces proactive methods of estimating semiconductor reliability from yield information using yield–reliability relation models. Time-dependent and -independent models are discussed.

The last section concludes this chapter and addresses topics for future research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BIB:

burn-in board

BIR:

built-in reliability

DBI:

dynamic burn-in

DFM:

design for manufacturability

DFR:

design for reliability

DFY:

design for yield

DLBI:

die-level burn-in

DLBT:

die-level burn-in and testing

DUT:

device under test

EOS:

electrical-over-stress

ESD:

electrostatic discharge

KGD:

known good dies

PLBI:

package-level burn-in

POF:

physics-of-failure

QML:

qualified manufacturing line

SBI:

steady-state or static burn-in

TDBI:

test during burn-in

WLBI:

wafer-level burn-in

WLBT:

wafer-level burn-in and testing

WLR:

wafer-level reliability

References

  1. Semiconductor Industry Association: The National Technology Roadmap for Semiconductors (Semiconductor Industry, San Jose, CA 2003)

    Google Scholar 

  2. World Semiconductor Trade Statistics: Semiconductor Market Forecast (Miyazaki, Japan May 2004)

    Google Scholar 

  3. W. T. K. Chien, W. Kuo: Use of the Dirichlet process for reliability analysis, Comput. Ind. Eng. 27, 339–343 (1994)

    Article  Google Scholar 

  4. W. T. K. Chien, W. Kuo: Extensions of Kaplan–Meier estimator, Commun. Stat. Simul. Comp. 24, 953–964 (1995)

    Article  MATH  Google Scholar 

  5. National Research Council Committee: Implications of Emerging Micro- and Nano-technologies, National Research Council Committee, Division of Engineering and Physical Sciences (National Academy, Washington 2003) p. 251

    Google Scholar 

  6. W. Luo, Y. Kuo, W. Kuo: Dielectric relaxation and breakdown detection of doped tantalum oxide high-k thin films, IEEE Trans. Dev. Mater. Reliab. 4, 488–494 (2004)

    Article  Google Scholar 

  7. W. Kuo, W. T. K. Chien, T. Kim: Reliability, Yield, and Stress Burn-in (Kluwer Academic, Norwell 1998)

    Book  Google Scholar 

  8. C. J. McDonald: New tools for yield improvement in integrated circuit manufacturing: can they be applied to reliability, Microelectron. Reliab. 39, 731–739 (1999)

    Article  Google Scholar 

  9. L. Peters: Introduction to Integrated Yield Analysis, Semicond. Int. 22, 56 (January 1999)

    Google Scholar 

  10. http://www.cadence.com/whitepapers/5047/ParametricYieldWPfnl.pdf

    Google Scholar 

  11. R. K. Ravikumar: Viewpoint addressing design yield prior to silicon, Chip Des. Mag. 40 (April/May 2004)

    Google Scholar 

  12. A. M. Nardi, A. Sangiovanni-Vincentelli: Logic synthesis for manufacturability, IEEE Des. Test Comput. 21(3), 192–199 (2004)

    Article  Google Scholar 

  13. A. J. Strojwas: Yield of VLSI Circuits: myths vs. reality, 23th Design Automation Conference (IEEE Computer Society, Las Vegas, NV 1986) pp. 234–235

    Google Scholar 

  14. C. H. Stapper: Large area fault clusters and fault tolerance in VLSI circuits: a review, IBM J. Res. Develop. 33, 174–177 (1989)

    Article  Google Scholar 

  15. W. Kuo, T. H. Kim: An overview of manufacturing yield and reliability modeling for semiconductor products, Proc. IEEE 87, 1329–1344 (1999)

    Article  Google Scholar 

  16. A. V. Ferris-Prabhu: Introduction to Semiconductor Device Yield Modeling (Artech House, Boston 1992)

    Google Scholar 

  17. T. L. Michalka, R. C. Varshney, J. D. Meindl: A discussion of yield modeling with defect clustering, circuit repair and circuit redundancy, IEEE Trans. Semicond. Manuf. 3, 116–127 (1990)

    Article  Google Scholar 

  18. T. S. Barnett, A. D. Singh, V. P. Nelson: Estimating burn-in fall-out for redundacy memory, Proc. 2001 VLSI Test Symp. (IEEE Computer Society, Los Angeles, CA May 2001) pp. 340–347

    Google Scholar 

  19. T. S. Barnett, A. D. Singh, V. P. Nelson: Extending integrated-circuit yield models to estimate early life reliability, IEEE Trans. Reliab. 52, 296–301 (2003)

    Article  Google Scholar 

  20. T. S. Barnett, A. D. Singh, M. Grady, V. P. Nelson: Yield–reliability modeling: experimental verification and application to burn-in reduction, Proc. 20th IEEE VLSI Test Symp. (IEEE Computer Society, Monterey, CA 2002) pp. 1–6

    Google Scholar 

  21. T. S. Barnett, M. Grady, K. Purdy, A. D. Singh: Redundancy implications for early-life reliability: experimental verification of an integrated yield–reliability model. In: ITC International Test Conference (IEEE Computer Society, Baltimore, MD 2002) pp. 693–699

    Google Scholar 

  22. T. S. Barnett, A. D. Singh: Relating yield models to burn-in fall-out in time, ITC Int. Test Conf. (IEEE Computer Society, Charlotte, NC 2003) pp. 77–84

    Google Scholar 

  23. H. H. Huston, C. P. Clarke: Reliability defect detection and screening during processing: theory and implementation, Proc. Int. Reliability Physics Symposium (IEEE Reliability Society, San Diego, CA 1992) pp. 268–275

    Google Scholar 

  24. K. O. Kim, W. Kuo, W. Luo: A relation model of gate oxide yield and reliability, Microelectron. Reliab. 44, 425–434 (2004)

    Article  Google Scholar 

  25. K. O. Kim, W. Kuo: A unified model incorporating yield, burn-in and reliability, Naval Res. Log. 51, 704–719 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. H. Kim, W. Kuo: Modeling manufacturing yield and reliability, IEEE Trans. Semicond. Manuf. 12, 485–492 (1999)

    Article  Google Scholar 

  27. W. C. Riordan, R. Miller, J. Hicks: Reliability versus yield and die location in advanced VLSI, Microelectron. Reliab. 39, 741–749 (1999)

    Article  Google Scholar 

  28. J. A. Cunningham: The use and evaluation of yield models in integrated circuit manufacturing, IEEE Trans. Semicond. Manuf. 3, 60–71 (1990)

    Article  Google Scholar 

  29. M. Raghavachari, A. Srinivasan, P. Sullo: Poisson mixture yield models for integrated circuits: a critical review, Microelectron. Reliab. 37, 565–580 (1997)

    Article  Google Scholar 

  30. R. E. Langford, J. J. Liou: Negative binomial yield model parameter extraction using wafer probe bin map data (IEEE Electron Devices Meeting, Hong Kong 1998) pp. 130–133

    Google Scholar 

  31. F. Jensen: Yield, quality and reliability – a natural correlation?, Reliability 1991, ed. by R. H. Matthews (Elsevier Applied Science, London 1993) pp. 739–750

    Google Scholar 

  32. Z. Stamenkovic, N. Stojadinovic: New defect size distribution function for estimation of chip critical area in integrated circuit yield models, Electron. Lett. 28, 528–530 (1992)

    Article  Google Scholar 

  33. Z. Stamenkovic, N. Stojadinovic: Chip yield modeling related to photolithographic defects, Microelectron. Reliab. 32, 663–668 (1992)

    Article  Google Scholar 

  34. G. Allen, A. Walton, R. Holwill: A yield improvement technique for IC layout using local design rules, IEEE Trans. CAD ICs Syst. 11, 1355–1362 (1992)

    Google Scholar 

  35. S. Williamson, A. Singh, V. Nelson: Fault and yield modeling of MCMs for automotive applications, Proc. Int. MCM Conf. (IEEE Society, Denver 1996) pp. 147–154

    Google Scholar 

  36. J. Mattick, R. Kelsall, R. Miles: Improved critical area prediction by application of pattern recognition techniques, Microelectron. Reliab. 36, 1815–1818 (1996)

    Article  Google Scholar 

  37. C. H. Stapper, R. J. Rosner: Integrated circuit yield management and yield analysis: development and implementation, IEEE Trans. 8, 95–102 (1995)

    Google Scholar 

  38. J. Segal, L. Milor, Y. K. Peng: Reducing baseline defect density through modeling random defect-limited yield, Micro Mag. 18, 61–71 (2000)

    Google Scholar 

  39. H. Sato, M. Ikota, A. Sugimoto, H. Masuda: A new defect distribution metrology with a consistent discrete exponential formula and its application, IEEE Trans. Semicond. Manuf. 12, 409–418 (1999)

    Article  Google Scholar 

  40. K. S. Park, C. H. Jun: Semiconductor yield models using contagious distributions and their limiting forms, Comput. Eng. 42, 115–125 (2002)

    Google Scholar 

  41. C. H. Jun, Y. Hong, Y. K. Kim, K. S. Park, H. Park: A simulation-based semiconductor chip yield model incorporating a new defect cluster index, Microelectron. Reliab. 39, 451–456 (1999)

    Article  Google Scholar 

  42. J. A. Carrasco, V. Suñé: Combinatorial methods for the evaluation of yield and operational reliability of fault-tolerant systems-on-chip, Microelectron. Reliab. 44, 339–350 (2004)

    Article  Google Scholar 

  43. M. Scheffler, D. Cottet, G. Tröster: A simplified yield modeling method for design rule trade-off in interconnection substrates, Microelectron. Reliab. 41, 861–869 (2001)

    Article  Google Scholar 

  44. S. P. Cunningham, C. J. Spanos, K. Voros: Semiconductor yield improvement: results and best practices, IEEE Trans. Semicond. Manuf. 8, 103–109 (1995)

    Article  Google Scholar 

  45. C. N. Berglund: A unified yield model incorporating both defect and parametric effects, IEEE Trans. Semicond. Manuf. 9, 447–454 (1996)

    Article  Google Scholar 

  46. D. Dance, R. Jarvis: Using yield models to accelerate learning curve progress, IEEE Trans. Semi. Manuf. 5, 41–45 (1992)

    Article  Google Scholar 

  47. L. Peters: Choosing the Best Yield Model for Your Product, Semicond. Int. 23, 52 (May 2000)

    Google Scholar 

  48. X. Li, J. Strojwas, M. F. Antonelli: Holistic Yield Improvement Methodology, Semiconductor Fabtech 27(7), 257–265 (1998)

    Google Scholar 

  49. L. Peters: Demystifying Design-for-Yield, Semicond. Int. 27, 42 (July 2004)

    Google Scholar 

  50. A. Amerasekera, D. S. Campbell: Failure Mechanisms in Semiconductor Devices (Wiley, New York 1987)

    Google Scholar 

  51. J. E. Vinson, J. J. Liou: Electrostatic discharge in semiconductor devices: overview, Proc. IEEE 86, 399–419 (1998)

    Article  Google Scholar 

  52. N. Wan, K. Manning: Exceeding 60-year life expectancy from an electronic energy meter, Metering Asia Pac. Conf. (Kuala Lumpur, Malaysia 20-22 February 2001)

    Google Scholar 

  53. W. W. Abadeer, A. Bagramian, D. W. Conkle, C. W. Griffin, E. Langois, B. F. Lloyd, R. P. Mallette, J. E. Massucco, J. M. McKenna, S. W. Mittl, P. H. Noel: Key measurements of ultrathin gate dielectric reliability and in-line monitoring, IBM J. Res. Devel. 43, 407–417 (1999)

    Article  Google Scholar 

  54. C. Hu: Future CMOS scaling and reliability, Proc. IEEE 81, 682–689 (May 1993)

    Article  Google Scholar 

  55. J. Stevenson, J. A. Nachlas: Microelectronics reliability prediction derived from component defect densities (Pro Annual Reliab. Maintainab. Sympos., Los Angeles, CA 1990) pp. 366–370

    Google Scholar 

  56. R. Doyle, J. Barrett: Design for Reliability: a Focus on Electronics Assembly, Solder. Surf. Mount Technol. 9(3), 22–29 (1997)

    Google Scholar 

  57. M. Baz, M. Udrea-Spenea, E. Tsoi, F. Turtudau, V. Ilian, G. Papaioannou, L. Galateanu, A. Stan, A. Tserepi, M. Bucur: Building in reliability technology for diodes manufacturing, IEEE CAS 2000 Proceedings 1, 333–337 (2000)

    Google Scholar 

  58. W. T. K. Chien, C. H. J. Huang: Pracitical building in reliability approaches for semiconductor manufacturing, IEEE Trans. Reliab. 52, 469–482 (2002)

    Google Scholar 

  59. S. Garrard: Production implementation of a practical WLR program (1994 IRW Final Report IEEE International, Lake Tahoe, CA 1995) pp. 20–29

    Google Scholar 

  60. L. N. Lie, A. K. Kapoor: Wafer level reliability procedures to monitor gate oxide quality using V ramp and J ramp test methodology, 1995 IRW Final Report (IEEE International, Gold Canyon, AZ 1996) pp. 113–121

    Google Scholar 

  61. A. P. Bieringer, D. Koch, H. Kammer, a. Kohlhase, A. Lill, A. Preusser, A. Schlemm, M. Schneegans: Implementation of a WLR—program into a production line (1995 IRW Final Report, Gold Canyon, AZ 1996) pp. 49–54

    Google Scholar 

  62. T. A. Dellin, W. M. Miller, D. G. Pierce, E. S. Snyder: Wafer level reliability, SPIE Microelectron. Manuf. Reliab. 18(2), 144–154 (1992)

    Google Scholar 

  63. J. M. Soden, R. E. Anderson: IC failure analysis: techniques and tools for quality and reliability improvement, Proc. IEEE 81, 703–715 (1993)

    Article  Google Scholar 

  64. A. W. Righter, C. F. Hawkins, J. M. Soden, P. Maxwell: CMOS IC reliability indicators and burn-in economics (International Test Conference, IEEE Computer Society, Washington D.C. 1998) pp. 194–204

    Google Scholar 

  65. W. Kuo, Y. Kuo: Facing the headaches of early failures: a state-of-the-art review of burn-in decisions, Proc. IEEE 71, 1257–1266 (1983)

    Article  Google Scholar 

  66. A. Vassighi, O. Semenov, M. Sachdev: CMOS IC technology scaling and its impact on burn-in, IEEE Trans. Dev. Mater. Reliab. 4, 208–222 (2004)

    Article  Google Scholar 

  67. D. Gralian: Next generation burn-in development, IEEE Trans. Components Packaging Manuf. Technol. 17, 190–196 (May 1994)

    Article  Google Scholar 

  68. B. Vasquez, S. Lindsey: The promise of known-good-die technologies, MCM ʼ94 Proc. (IEEE Society, Santa Clara, CA 1994) pp. 1–6

    Google Scholar 

  69. D. Inbar, M. Murin: KGD for flash memory: burn-in is key, Semicond. Int. 8, 1 (2004)

    Google Scholar 

  70. A. Wager: Wafer probe tests and stresses used for quality and reliability improvement, 8th Annual KGD packaging and Test Workshop Proceedings (Die Products Consortium, Napa, CA September 2001)

    Google Scholar 

  71. P. Garrou: The wafer level packaging evolution, Semicond. Int. 27, 119 (10/2/2004)

    Google Scholar 

  72. R. Nelson: Hot tests whip chips into shape, Test Meas. World 20(12), 30 (October 2000)

    Google Scholar 

  73. D. Romanchik: Why burn-in ICs ?, Test Measurement World 12, 85–88 (Oct. 1992)

    Google Scholar 

  74. J. Mi: Warranty policies and burn-in, Naval Res. Log. 44, 199–209 (1997)

    Article  MATH  Google Scholar 

  75. J. Mi: minimizing some cost functions related to both burn-in and field use, Oper. Res. 44, 497–500 (1996)

    Article  MATH  Google Scholar 

  76. S. H. Sheu, Y. H. Chien: |Minimizing cost functions related to both burn-in and field operation under a generalized model, IEEE Trans. Reliab. 53, 435–440 (2004)

    Article  Google Scholar 

  77. Kosznik, Drapella: Combining preventive replacements and burn-in procedures, Qual. Reliab. Eng. Int. 18, 423–427 (2002)

    Article  Google Scholar 

  78. J. H. Cha: On a better burn-in procedure, J. Appl. Probab. 37, 1099–1103 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  79. J. H. Cha: Burn-in procedure for a generalized model, J. Appl. Probab. 38, 542–553 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  80. J. H. Cha, S. Lee, J. Mi: Bonding the optimal burn-in time for a system with two types of failure, Naval Res. Logist. 51, 1090–1101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  81. S. T. Tseng, C. Y. Peng: Optimal burn-in policy by using an integrated Wiener process, IIE Trans. 36, 1161–1170 (2004)

    Article  Google Scholar 

  82. K. N. Kim: Optimal burn-in for minimizing cost and multi-objectives, Microelectron. Reliab. 38, 1577–1583 (1998)

    Article  Google Scholar 

  83. W. T. K. Chien, W. Kuo: A nonparametric approach to estimate system burn-in time, IEEE Trans. Semicond. Manuf. 9, 461–466 (1996)

    Article  Google Scholar 

  84. W. T. K. Chien, W. Kuo: A nonparametric Bayes approach to decide system burn-in time, Naval Res. Logist. 44, 655–671 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. W. Kuo: Reliability enhancement through optimal burn-in, IEEE Trans. Reliab. R-33, 145–156 (1984)

    Article  Google Scholar 

  86. D. H. Chi, W. Kuo: Burn-in optimization under reliability and capacity restrictions, IEEE Trans. Reliab. 38, 193–199 (1989)

    Article  Google Scholar 

  87. T. R. Kar, J. A. Nachlas: Coordinated warranty & burn-in strategies, IEEE Trans. Reliab. 46, 512–519 (1997)

    Article  Google Scholar 

  88. K. O. Kim, W. Kuo: Percentile residual life and system reliability as performance measures in the optimal system design, IIE Trans. 35, 1133–1142 (2003)

    Article  Google Scholar 

  89. H. W. Block, J. Mi, T. H. Savits: Some results on burn-in, Stat. Sin. 4, 525–534 (1994)

    MathSciNet  MATH  Google Scholar 

  90. H. W. Block, J. Mi, T. H. Savits: Burn-in at the component and system level. In: Lifetime Data: Models in Reliability and Survival Analysis, ed. by N. P. Jewell, A. C. Kimber, M. L. T. Lee, G. A. Whitmore (Kluwer, Dordrecht 1995)

    Google Scholar 

  91. C. W. Whitbeck, L. M. Leemis: Component vs. system burn-in techniques for electronic equipment, IEEE Trans. Reliab. 38, 206–209 (1989)

    Article  Google Scholar 

  92. R. K. Reddy, D. L. Dietrich: A 2-level environmental stress screening model: a mixed distribution approach, IEEE Trans. Reliab. 43, 85–90 (1994)

    Article  Google Scholar 

  93. E. A. Pohl, D. L. Dietrich: Environmental stress screening strategies for multi-component systems with weibull failure times and imperfect failure detection (Proceedings Annual Reliability and Maintainability Symposium, Washington D.C. 1995) pp. 223–232

    Google Scholar 

  94. W. Kuo: Incompatibility in evaluating large-scale systems reliability, IEEE Trans. Reliab. 43, 659–660 (1994)

    Article  Google Scholar 

  95. W. T. K. Chien, W. Kuo: Modeling and maximizing burn-in effectiveness, IEEE Trans. Reliab. 44, 19–25 (1995)

    Article  Google Scholar 

  96. W. T. K. Chien, W. Kuo: Optimal burn-in simulation on highly integrated circuit systems, IIE Trans. 24, 33–43 (1992)

    Article  Google Scholar 

  97. T. H. Kim, W. Kuo: Optimal burn-in decision making, Qual. Reliab. Eng. Int. 14, 417–423 (1998)

    Article  Google Scholar 

  98. K. O. Kim, W. Kuo: A general model of heterogeneous system lifetimes and conditions for system burn-in, Naval Res. Log. 50, 364–380 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  99. K. O. Kim, W. Kuo: Some considerations on system burn-in, IEEE Trans. Reliab. 54(2), 207–214 (2005)

    Article  Google Scholar 

  100. K. O. Kim, W. Kuo: Two-level burn-in for reliability and economy in repairable series systems having incompatibility, J. Reliab. Qual. Saf. Eng. 11(3), 197–211 (2004)

    Article  Google Scholar 

  101. F. Kuper, J. Vander Pol, E. Ooms, T. Johnson, R. Wijburg: Relation between yield and reliability of integrated circuits: experimental results and application to continuous early failure rate reduction programs (Proc. Int. Reliab. Phys. Symp., Dallas, Texas 1996) pp. 17–21

    Google Scholar 

  102. J. Van der Pol, F. Kuper, E. Ooms: Relation between yield and reliability of ICs and application to failure rate assessment and reduction in the one digit fit and ppm reliability era, Microelectron. Reliab. 36, 1603–1610 (1996)

    Article  Google Scholar 

  103. T. Zhao, Y. Hao, P. Ma, T. Chen: Relation between reliability and yield of ICs based on discrete defect distribution model, Proc. 2001 IEEE Int. Symp. Defect Fault Tolerance in VLSI systems (IEEE Society, San Francisco, CA 2001)

    Google Scholar 

  104. J. Van der Pol, E. Ooms, T. Hof, F. Kuper: Impact of screening of latent defects at electrical test on yield-reliability relation and application to burn-in elimination (Int. Relia. Phys. Sympos., Reno, NV 1998) pp. 370–377

    Google Scholar 

  105. K. R. Forbes, N. Arguello: Using time-dependent reliability fallout as a function of yield to optimize burn-in time for a 130nm SRAM device. In: Integ. Reliab. Workshop Final Rep., IEEE Int., Lake Tahoe, CA (IEEE Society 2003) pp. 61–66

    Google Scholar 

  106. T. H. Kim, W. Kuo, K. Chien: Burn-in effect on yield, IEEE Trans. Electron. Pack. Manuf. 23, 293–299 (2000)

    Article  Google Scholar 

  107. K. O. Kim, M. Zuo, W. Kuo: On the relationship of semiconductor yield and reliability, IEEE Trans. Semicond. Manuf. 18(3), 422–429 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Way Kuo , Kyungmee Kim or Taeho Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Kuo, W., Kim, K., Kim, T. (2006). Modeling and Analyzing Yield, Burn-In and Reliability for Semiconductor Manufacturing: Overview. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-84628-288-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-288-1_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-806-0

  • Online ISBN: 978-1-84628-288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics