Skip to main content

Interaction between Genetic Vulnerability and Neurosteroids in Purkinje cells as a Possible Neurobiological Mechanism in Autism Spectrum Disorders

  • Chapter
Autism

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Autism has a strong genetic basis, but other risk factors, acting during brain development, probably contribute to the clinical manifestations of the disease. Male sex is an important risk factor in autism, as shown by the much higher frequency of autism in males. Some authors have proposed the theory of the “autistic brain” as an extreme form of “male brain.” This theory is supported by the existence of sexual dimorphisms between male and female brains, by the effects of estrogens on several neurotransmitter systems, and by observations that prenatal androgens produce sex differences in brain and behavior. The investigation of sex-related differences in brain structures that are implicated in autism thus appears to be an extremely interesting research avenue.

A major challenge, however, is to develop animal models where the interaction between genetic predisposition and non-genetic risk factors in autism can be tested. The heterozygous reeler mouse brain, which has reduced levels of the protein Reelin, reproduces some of the developmental abnormalities observed in the autistic brain, such as loss of Purkinje cells (PCs). It has been demonstrated that male (but not female) heterozygous reeler mice show a loss of PCs in the cerebellum, thus suggesting that decreased function of Reelin in the male gender provides a selective vulnerability to PC loss. Females may be protected against genetic vulnerability because of their high estrogen/androgen balance during brain development.

Thus, our efforts are directed toward understanding how male and female sex steroids and Reelin interact during cerebellar development and how they impinge on the regulation of PC generation and survival. This research may define novel targets for therapies to prevent PC loss, with the hypothesis that drugs that prevent or reduce these developmental abnormalities in the animal model may also be useful to prevent or ameliorate autistic behaviors in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, Sram J, Bockholt A, Jones IR, Craddock N, Cook EH, Vicente A, Sommer SS. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 2005; 10: 329–335.

    Article  PubMed  CAS  Google Scholar 

  2. Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS, Faraone SV, Tsuang MT. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 2001; 11: 490–497.

    Article  PubMed  CAS  Google Scholar 

  3. Geschwind N, Behan P. Left-handedness: Association with immune disease, migraine, and developmental learning disorder. Proc Natl Acad Sci USA 1982; 79: 5097–5100.

    Article  PubMed  CAS  Google Scholar 

  4. Berenbaum SA, Denburg SD. Evaluating the empirical support for the role of testosterone in the Geschwind-Behan-Galaburda model of cerebral lateralization: Commentary on Bryden, McMANUS, and Bulman-Fleming. Brain Cogn 1995; 27: 79–83.

    Article  PubMed  CAS  Google Scholar 

  5. Mathews GA, Fane BA, Pasterski VL, Conway GS, Brook C, Hines M. Androgenic influences on neural asymmetry: Handedness and language lateralization in individuals with congenital adrenal hyperplasia. Psychoneuroendocrinology 2004; 29: 810–822.

    Article  PubMed  CAS  Google Scholar 

  6. Baron-Cohen S. The extreme male brain theory of autism. Trends Cogn Sci 2002; 8: 248–254.

    Article  Google Scholar 

  7. Corbier P, Edwards DA, Roffi J. The neonatal testosterone surge: A comparative study. Arch Int Physiol Biochim Biophys 1992; 100: 127–131.

    Article  PubMed  CAS  Google Scholar 

  8. Gorski RA, Gordon JH, Shryne JE, Southam AM. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 1978; 148: 333–346.

    Article  PubMed  CAS  Google Scholar 

  9. Arai Y, Sekine Y, Murakami S. Estrogen and apoptosis in the developing sexually dimorphic preoptic area in female rats. Neurosci Res 1996; 25: 403–407.

    Article  PubMed  CAS  Google Scholar 

  10. Krezel W, Dupont S, Krust A, Chambon P, Chapman PF. Increased anxiety and synaptic plasticity in estrogen receptor β-deficient mice. Proc Natl Acad Sci USA 2001; 102: 12278–12282.

    Article  Google Scholar 

  11. Bodo C, Rissman EF. New roles for estrogen receptor beta in behavior and neuroendocrinology. Front Neuroendocrinol 2006; 27: 217–232.

    Article  PubMed  CAS  Google Scholar 

  12. Wang L, Andersson S, Warner M, Gustafsson JA. Estrogen receptor (ER)β knockout mice reveal a role for ERβ in migration of cortical neurons in the developing brain. Proc Natl Acad Sci USA 2003; 100: 703–708.

    Article  PubMed  CAS  Google Scholar 

  13. Hadj-Sahraoui N, Frederic F, Delhaye-Bouchaud N, Mariani J. Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J Neurogenet 1996; 11: 45–58.

    Article  PubMed  CAS  Google Scholar 

  14. Doulazmi M, Frederic F, Lemaigre-Dubreuil Y, Hadj-Sahraoui N, Delhaye-Bouchaud N, Mariani J. Cerebellar Purkinje cell loss during life span of the heterozygous staggerer mouse (Rora(+)/Rora(sg)) is gender-related. J Comp Neurol 1999; 411: 267–273.

    Article  PubMed  CAS  Google Scholar 

  15. Kuemerle B, Gulden F, Cherosky N, Williams E, Herrup K. The mouse Engrailed genes: A window into autism. Behav Brain Res 2007; 176: 121–132.

    Article  PubMed  CAS  Google Scholar 

  16. Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MA, Rabidou D, Santucci AC, Perl D, Morrisey E, Buxbaum JD. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci USA 2005; 102: 9643–9648.

    Article  PubMed  CAS  Google Scholar 

  17. Kates WR, Burnette CP, Eliez S Strunge LA, Kaplan D, Landa R, Reiss AL, Pearlson GD. Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. Am J Psychiatry 2004; 161: 539–546.

    Article  PubMed  Google Scholar 

  18. Friedman WJ, McEwen BS, Toran-Allerand CD, Gerlach JL. Perinatal development of hypothalamic and cortical estrogen receptors in mouse brain: Methodological aspects. Brain Res Dev Brain Res 1983; 11: 19–27.

    Google Scholar 

  19. Gerlach JL, McEwen BS, Toran-Allerand CD, Friedman WJ. Perinatal development of estrogen receptors in mouse brain assessed by radioautography, nuclear isolation and receptor assay. Brain Res Dev Brain Res 1983; 11: 7–18.

    Google Scholar 

  20. Miranda R, Toran-Allerand CD. Developmental regulation of estrogen receptor mRNA in the rat cerebral cortex: A non-isotopic in situ hybridization study. Cereb Cortex 1992; 2: 1–15.

    Article  PubMed  CAS  Google Scholar 

  21. Shughrue P, Scrimo P, Lane M, Askew R, Merchenthaler I. The distribution of estrogen receptor-β mRNA in forebrain regions of the estrogen receptor-a knockout mouse. Endocrinology 1997a; 138: 5649–5652.

    Article  CAS  Google Scholar 

  22. Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J Comp Neurol 1997b; 388: 507–525.

    Article  CAS  Google Scholar 

  23. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997; 138: 863–870.

    Article  PubMed  CAS  Google Scholar 

  24. Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 1997; 277: 1508–1510.

    Article  PubMed  CAS  Google Scholar 

  25. Levin ER. Cellular functions of the plasma membrane estrogen receptor. Trends Endocrinol Metab 1999; 10: 374–377.

    Article  PubMed  CAS  Google Scholar 

  26. Toran-Allerand CD, Singh M, Setalo GJ. Novel mechanisms of estrogen action in the brain: New players in an old story. Front Neuroendocrinol 1999; 20: 97–121.

    Google Scholar 

  27. Belcher SM, Zsarnovszky A. Estrogenic actions in the brain: Estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J Pharmacol Exp Ther 2001; 299: 408–414.

    PubMed  CAS  Google Scholar 

  28. Honda K, Sawada H, Kihara T, Urushitani M, Nakamizo T, Akaike A, Shimohama S. Phosphatidylinositol 3-kinase mediates neuroprotection by estrogen in cultured cortical neurons. J Neurosci Res 2000; 60: 321–327.

    Article  PubMed  CAS  Google Scholar 

  29. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM. The mitogen activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci 1999; 19: 2455–2463.

    PubMed  CAS  Google Scholar 

  30. Singh M, Setalo G Jr, Guan XP, Warren M, Toran-Allerand CD. Estrogen induced activation of mitogen-activated protein kinase in cerebral cortical explants: Convergence of estrogen and neurotrophin signaling pathways. J Neurosci 1999; 19: 1179–1188.

    PubMed  CAS  Google Scholar 

  31. Belcher SM, Le HH, Spurling L, Wong JK. Rapid estrogenic regulation of extracellular signal-regulated kinase 1/2 signaling in cerebellar granule cells involves a G protein- and protein kinase A-dependent mechanism and intracellular activation of protein phosphatase 2A. Endocrinology 2005; 146: 5397–5406.

    Article  PubMed  CAS  Google Scholar 

  32. Singh M, Meyer E, Simpkins J. The effect of ovariectomy and estradiol replacement on brain derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 1995; 136: 2320–2324.

    Article  PubMed  CAS  Google Scholar 

  33. Sohrabji F, Miranda R, Toran-Allerand D. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci USA 1995; 92: 11110–11114.

    Google Scholar 

  34. McMillan P, Singer C, Dorsa D. The effects of ovariectomy and estrogen replacement on trkA and cholineacetyltransferase mRNA expression in the basal forebrain of the adult female sprague-dawley rat. J Neurosci 1996; 16: 1860–1865.

    PubMed  CAS  Google Scholar 

  35. Miranda R, Sohrabji F, Singh M, Toran-Allerand CD. Nerve growth factor (NGF) regulation of estrogen receptors in explant cultures of the developing forebrain. J Neurobiol 1996; 31: 77–87.

    Article  PubMed  CAS  Google Scholar 

  36. Chao MV, Hempstead B. p75 and Trk: A two-receptor system. Trends Neurosci 1995; 18: 321–326.

    Article  PubMed  CAS  Google Scholar 

  37. Rabizadeh S, Oh J, Zhong L, Yang J, Bitler C, Butcher L, Bredesen D. Induction of apoptosis by the low-affinity NGF receptor. Science 1993; 261: 345–348.

    Article  PubMed  CAS  Google Scholar 

  38. Majdan M, Lachance C, Gloster A, Aloyz R, Zeindler C, Bamji SX, Bhakar A, Belliveau D, Fawcett J, Miller FD, Baker PA. Transgenic mice expressing the intracellular domain of p75 neurotrophin receptor undergo neuronal apoptosis. J Neurosci 1997; 17: 6988–6998.

    PubMed  CAS  Google Scholar 

  39. Sohrabji F, Miranda R, Toran-Allerand CD. Estrogen differentially regulates estrogen and nerve growth factor receptor mRNAs in adult sensory neurons. J Neurosci 1994b; 14: 459–471.

    CAS  Google Scholar 

  40. Toran-Allerand CD. Mechanisms of estrogen action during neural development: Mediation by interactions with the neurotrophins and their receptors? J Steroid Biochem Mol Biol 1996; 56: 169–178.

    Article  PubMed  CAS  Google Scholar 

  41. Mendez P, Wandosell F, Garcia-Segura LM. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: Cellular and molecular mechanisms. Front Neuroendocrinol 2006; 27: 391–403.

    Article  PubMed  CAS  Google Scholar 

  42. Aguado F, Sanchez-Franco F, Cacidedo L, Fernandez T, Rodrigo J, Martinez-Murillo R. Subcellular localization of insulin-like growth factor I (IGF-I) in purkinje cells of the adult rat: An immunocytochemical study. Neurosci Lett 1992; 135: 171–174.

    Article  PubMed  CAS  Google Scholar 

  43. Bondy C, Werner H, Roberts CT Jr, LeRoith D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: Comparison with insulin-like growth factors I and II. Neuroscience 1992; 46: 909–923.

    Article  PubMed  CAS  Google Scholar 

  44. Fukudome Y, Tabata T, Miyoshi T, Haruki S, Araishi K, Sawada S, Kano M. Insulin-like growth factor-I as a promoting factor for cerebellar purkinje cell development. Eur J Neurosci 2003; 17: 2006–2016.

    Article  PubMed  Google Scholar 

  45. Nordeen EJ, Nordeen KW. Estrogen stimulates the incorporation of new neurons into the avian song nuclei during adolescence. Dev Brain Res 1989; 49: 27–32.

    Article  CAS  Google Scholar 

  46. Ma ZQ, Spreafico E, Pollio G, Santagati S, Conti E, Cattaneo E, Maggi A Activated estrogen receptor mediates growth arrest and differentiation of a neuroblastoma cell line. Proc Natl Acad Sci USA 1993; 90: 3740–3744.

    Article  PubMed  CAS  Google Scholar 

  47. Rasmussen J, Torres-Aleman I, McLusky N, Naftolin F, Robbins R. The effects of estradiol on the growth patterns of estrogen receptor-positive hypothalamic cell lines. Endocrinology 1990; 126: 235–240.

    Article  PubMed  CAS  Google Scholar 

  48. Henderson RG, Brown AE, Tobet SA. Sex differences in cell migration in the preoptic area/anterior hypothalamus of mice. J Neurobiol 1999; 41: 252–266.

    Article  PubMed  CAS  Google Scholar 

  49. Orikasa C, Kondo Y, Hayashi S, McEwen B, Sakuma Y. Sexually dimorphic expression of estrogen receptor β in the anteroventral periventricular nucleus of the rat preoptic area. Implication in luteinizing hormone surge. Proc Natl Acad Sci USA 2002; 99: 3306–3311.

    Article  PubMed  CAS  Google Scholar 

  50. Nordeen EJ, Nordeen KW, Sengelaub DR, Arnold AP. Androgens prevent normally occurring cell death in a sexually dimorphic spinal nucleus. Science 1985; 229: 671–673.

    Article  PubMed  CAS  Google Scholar 

  51. Murakami S, Arai Y. Neuronal death in the developing sexually dimorphic periventricular nucleus of the preoptic area in the female rat effect of neonatal androgen treatment. Neurosci Lett 1989; 102: 185–190.

    Article  PubMed  CAS  Google Scholar 

  52. Davis EC, Popper P, Gorski RA. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res 1996; 734: 10–18.

    Article  PubMed  CAS  Google Scholar 

  53. Chung WC, Swaab DF, De Vries GJ. Apoptosis during sexual differentiation of the bed nucleus of the stria terminalis in the rat brain. J Neurobiol 2000; 43: 234–243.

    Article  PubMed  CAS  Google Scholar 

  54. Breedlove SM, Arnold AP. Sexually dimorphic motor nucleus in the rat lumbar spinal cord response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Res 1981; 225: 297–307.

    Article  PubMed  CAS  Google Scholar 

  55. Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS. Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc Natl Acad Sci USA 1997; 94: 14077–14082.

    Article  PubMed  CAS  Google Scholar 

  56. DonCarlos LL, Handa RJ. Developmental profile of estrogen receptor mRNA in the preoptic area of male and female neonatal rats. Dev Brain Res 1994; 79: 283–289.

    Article  CAS  Google Scholar 

  57. Jordan CL, Breedlove SM, Arnold AP. Ontogeny of steroid accumulation in spinal lumbar motoneurons of the rat implications for androgen’s site of action during synapse elimination. J Comp Neurol 1991; 313: 441–448.

    Article  PubMed  CAS  Google Scholar 

  58. Freeman LM, Watson NV, Breedlove SM. Androgen spares androgen-insensitive motoneurons from apoptosis in the spinal nucleus of the bulbocavernosus in rats. Horm Behav 1996; 30: 424–433.

    Article  PubMed  CAS  Google Scholar 

  59. Forger NG, Howell ML, Bengston L, MacKenzie L, DeChiara TM, Yancopoulos GD. Sexual dimorphism in the spinal cord is absent in mice lacking the ciliary neurotrophic factor receptor. J Neurosci 1997; 17: 9605–9612.

    PubMed  CAS  Google Scholar 

  60. Varela CR, Bengston L, Xu J, MacLennan AJ, Forger NG. Additive effects of ciliary neurotrophic factor and testosterone on motoneuron survival; differential effects on motoneuron size and muscle morphology. Exp Neurol 2000; 165: 384–393.

    Article  PubMed  CAS  Google Scholar 

  61. Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci 1997; 20: 245–267.

    Article  PubMed  CAS  Google Scholar 

  62. Zup SL, Carrier H, Waters E, Tabor A, Bengston L, Rosen G, Simerly R, Forger NG. Overexpression of Bcl-2 reduces sex differences in neuron number in the brain and spinal cord. J Neurosci 2003; 23: 2357–2362.

    PubMed  CAS  Google Scholar 

  63. Forger NG, Rosen GJ, Waters EM, Jacob D, Simerly RB, de Vries GJ. Deletion of Bax eliminates sex differences in the mouse forebrain. Proc Natl Acad Sci USA 2004; 101: 13666–13671.

    Google Scholar 

  64. Jacob DA, Bengston CL, Forger NG. Effects of Bax gene deletion on muscle and motoneuron degeneration in a sexually dimorphic neuromuscular system. J Neurosci 2005; 25: 5638–5644.

    Article  PubMed  CAS  Google Scholar 

  65. Garcia-Segura LM, Cardona-Gomez P, Naftolin F, Chowen JA. Estradiol upregulates Bcl-2 expression in adult brain neurons. Neuroreport 1998; 9: 593–597.

    Article  PubMed  CAS  Google Scholar 

  66. Dubal DB, Shughrue PJ, Wilson ME, Merchenthaler I, Wise PM. Estradiol modulates bcl-2 in cerebral ischemia a potential role for estrogen receptors. J Neurosci 1999; 19: 6385–6393.

    PubMed  CAS  Google Scholar 

  67. Bauman ML, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology 1985; 35: 866–874.

    PubMed  CAS  Google Scholar 

  68. Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A. Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 1986; 146: 862–866.

    Google Scholar 

  69. Kemper TL, Bauman ML. Neuropathology of infantile autism. J Neuropathol Exp Neurol 1998; 57: 645–652.

    Article  PubMed  CAS  Google Scholar 

  70. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P. A clinicopathological study of autism. Brain 1998; 121: 889–905.

    Article  PubMed  Google Scholar 

  71. Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, Iverson P, Bauman M, Perry E. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 2002; 15: 1483–1495.

    Article  Google Scholar 

  72. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of the cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988; 318: 1349–1354.

    Article  PubMed  CAS  Google Scholar 

  73. Sacchetti B, Scelfo B, Tempia F, Strata P. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 2004; 42: 973–982.

    Article  PubMed  CAS  Google Scholar 

  74. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: A review and future directions Int J Dev Neurosci 2005; 23: 183–187.

    Article  PubMed  Google Scholar 

  75. Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 1972; 145: 399–464.

    Google Scholar 

  76. Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: An in vitro study. J Neurosci 1997; 17: 3710–3726.

    PubMed  CAS  Google Scholar 

  77. Clancy B, Darlington RB, Finlay BL. Translating developmental time across mammalian species. Neuroscience 2001; 105: 7–17.

    Article  PubMed  CAS  Google Scholar 

  78. Kuemerle B, Zanjani H, Joyner A, Herrup K. Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci 1997; 17: 7881–7889.

    PubMed  CAS  Google Scholar 

  79. Tsutsui K, Ukena K, Usui M, Sakamoto H, Takase M. Novel brain function: Biosynthesis and actions of neurosteroids in neurons. Neurosci Res 2000; 36: 261–273.

    Article  PubMed  CAS  Google Scholar 

  80. Compagnone NA, Mellon SH. Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000; 21: 1–56.

    Article  PubMed  CAS  Google Scholar 

  81. Chung BC, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. Human cholesterol side-chain cleavage enzyme, P450SCC: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci USA 1986; 83: 8962–8966.

    Article  PubMed  CAS  Google Scholar 

  82. Simpson ER, MacDonald PC. Endocrine physiology of the placenta. Annu Rev Physiol 1981; 43: 163–188.

    Article  PubMed  CAS  Google Scholar 

  83. Keeney DS, Ikeda Y, Waterman MR, Parker KL. Cholesterol side-chain cleavage cytochrome P450 gene expression in the primitive gut of the mouse embryo does not require steroidogenic factor 1. Mol Endocrinol 1995; 9: 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  84. Mellon S, Deschepper CF. Neurosteroid biosynthesis: Genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993; 629: 283–292.

    Article  PubMed  CAS  Google Scholar 

  85. Miller W, Tyrell J. (1994) The adrenal cortex, in: Felig P, Baxter J, Frohman L. (Eds.), Endocrinology & Metabolism, McGraw Hill, New York, pp. 555–711.

    Google Scholar 

  86. Corbin CJ, Graham-Lorence S, McPhaul M, Mendelson CR, Simpson ER. Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in nonsteroidogenic cells. Proc Natl Acad Sci USA 1988; 85: 8948–8952.

    Article  PubMed  CAS  Google Scholar 

  87. Harada N. Cloning of a complete cDNA encoding human aromatase: Immunochemical identification and sequence analysis. Biochem Biophys Res Commun 1988; 156: 725–732.

    Article  PubMed  CAS  Google Scholar 

  88. Mellon SH. Neurosteroids: Biochemistry, modes of action, and clinical relevance. J Clin Endocrinol Metab 1994; 78: 1003–1008.

    Article  PubMed  CAS  Google Scholar 

  89. Ukena K, Usui M, Kohchi C, Tsutsui K. Cytochrome p450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology 1998; 139: 137–147.

    Article  PubMed  CAS  Google Scholar 

  90. Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3β-hydroxysteroid dehydrogenase/Δ5–Δ4 isomerase in the rat Purkinje neuron during neonatal life. Endocrinology 1999; 140: 805–813.

    Article  PubMed  CAS  Google Scholar 

  91. Lavaque E, Mayen A, Azcoitia I, Tena-Sempere M, Garcia-Segura LM. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. J Neurobiol 2006; 66: 308–318.

    Article  PubMed  CAS  Google Scholar 

  92. Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci USA 2006; 103: 14602–14607.

    Article  PubMed  CAS  Google Scholar 

  93. Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology 2003; 144: 4466–4477.

    Article  PubMed  CAS  Google Scholar 

  94. Smith SS, Waterhouse BD, Woodward DJ. Locally applied estrogens potentiate glutamate-evoked excitation of cerebellar Purkinje cells. Brain Res 1988; 475: 272–282.

    Article  PubMed  CAS  Google Scholar 

  95. Smith SS. Estrogen administration increases neuronal responses to excitatory amino acids as a long-term effect. Brain Res 1989; 503: 354–357.

    Article  PubMed  CAS  Google Scholar 

  96. Price RH, Handa RJ. Expression of estrogen receptor-beta protein and mRNA in the cerebellum of the rat. Neurosci Lett 2000; 288: 115–118.

    Article  PubMed  CAS  Google Scholar 

  97. Webb P, Lopez GN, Uht RM, Kushner PJ. Tamoxifen activation of the estrogen receptor/AP-1 pathway: Potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 1995; 9: 443–456.

    Article  PubMed  CAS  Google Scholar 

  98. Woolley CS, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N -methyl-d-aspartate receptor-dependent mechanism. J Neurosci 1994; 14: 7680–7687.

    PubMed  CAS  Google Scholar 

  99. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA. Abnormal cerebellar development and foliation in BDNF –/– mice reveals a role for neurotrophins in cns patterning. Neuron 1997; 19: 269–281.

    Article  PubMed  CAS  Google Scholar 

  100. Bates B, Rios M, Trumpp A, Chen C, Fan G, Bishop JM, Jaenisch R. Neurotrophin-3 is required for proper cerebellar development. Nat Neurosci 1999; 2: 115–117.

    Article  PubMed  CAS  Google Scholar 

  101. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374, 719–723.

    Article  PubMed  Google Scholar 

  102. Persico AM, D’Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C, Wassink TH, Schneider C, Melmed R, Trillo S, Montecchi F, Palermo M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Conciatori M, Marino R, Quattrocchi CC, Baldi A, Zelante L, Gasparini P, Keller F. Collaborative linkage study of autism. Mol Psychiatry 2001; 6: 150–159.

    Article  PubMed  CAS  Google Scholar 

  103. Lugli G, Krueger JM, Davis JM, Persico AM, Keller F, Smalheiser NR. Methodological factors influencing measurement and processing of plasma reelin in humans. BMC Biochem 2003; 4: 9.

    Article  PubMed  Google Scholar 

  104. Skaar DA, Shao Y, Haines JL, Stenger JE, Jaworski J, Martin ER, DeLong GR, Moore JH, McCauley JL, Sutcliffe JS, Ashley-Koch AE, Cuccaro ML, Folstein SE, Gilbert JR, Pericak-Vance MA. Analysis of the RELN gene as a genetic risk factor for autism. Mol Psychiatry 2005; 10: 563–571.

    Article  PubMed  CAS  Google Scholar 

  105. Serajee FJ, Zhong H, Mahbubul Huq AH. Association of Reelin gene polymorphisms with autism. Genomics 2006; 87: 75–83.

    Article  PubMed  CAS  Google Scholar 

  106. D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. Reelin is a ligand for lipoprotein receptors. Neuron 1999; 24: 471–479.

    Article  PubMed  Google Scholar 

  107. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J. Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled -1 and modulates Tau phosphorylation. Neuron 1999; 24: 481–489.

    Article  PubMed  CAS  Google Scholar 

  108. Kim DH, Iijima H, Goto K, Sakai J., Ishii H, Kim HJ, Suzuki H, Kondo H, Saeki S, Yamamoto T. Human apolipoprotein E receptor 2. A novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. J Biol Chem 1996; 271: 8373–8380.

    Article  PubMed  CAS  Google Scholar 

  109. Perez-Garcia CG, Tissir F, Goffinet AM, Meyer G. Reelin receptors in developing laminated brain structures of mouse and human. Eur J Neurosci 2004; 20: 2827–2832.

    Article  PubMed  CAS  Google Scholar 

  110. Jakab RL, Wong JK, Belcher SM. Estrogen receptor beta immunoreactivity in differentiating cells of the developing rat cerebellum. J Comp Neurol 2001; 430: 396–409.

    Article  PubMed  CAS  Google Scholar 

  111. Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS, Alves S.E. Immunolocalization of estrogen receptor beta in the mouse brain: Comparison with estrogen receptor alpha. Endocrinology 2003; 144: 2055–2067.

    Article  PubMed  CAS  Google Scholar 

  112. Simerly RB, Chang C, Muramatsu M, Swanson LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: An in situ hybridization study. J Comp Neurol 1990; 294: 76–95.

    Article  PubMed  CAS  Google Scholar 

  113. Biamonte F, Assenza G, Marino R, Caruso D, Crotti S, Melcangi RC, Cesa R, Strata P, Keller F. Interaction between estrogens and reelin in Purkinje cell development. Program 322.18/C5 Abstract Viewer/Itinerary Planner. Atlanta, Georgia: Society for Neuroscience, Online 2006.

    Google Scholar 

  114. Hatten ME, Heintz N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 1995; 18: 385–408.

    PubMed  CAS  Google Scholar 

  115. Fritzsch B. Observations on degenerative changes of Purkinje cells during early development in mice and in normal and otocyst-deprived chickens. Anat Embryol 1979; 158: 95–102.

    Article  PubMed  CAS  Google Scholar 

  116. Sawada K, Sakata-Haga H, Jeong YG, Azad MA, Ohkita S, Fukui Y. Purkinje cell loss in the cerebellum of ataxic mutant mouse, dilute-lethal: A fractionator study. Congenit Anom (Kyoto) 2004; 44: 189–195.

    Article  Google Scholar 

  117. Absil P, Pinxten R, Balthazart J, Eens M. Effects of testosterone on Reelin expression in the brain of male European starlings. Cell Tissue Res 2003; 312: 81–93.

    PubMed  CAS  Google Scholar 

  118. Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond B Biol Sci 1977; 281: 1–28.

    Article  PubMed  CAS  Google Scholar 

  119. Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 2004; 72: 295–339.

    Article  PubMed  CAS  Google Scholar 

  120. Wallace VA. Purkinje-cell-derived sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 1999; 9: 445–448.

    Article  PubMed  CAS  Google Scholar 

  121. Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet 1997; 13: 14–21.

    Article  PubMed  CAS  Google Scholar 

  122. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22: 103–114.

    Article  PubMed  CAS  Google Scholar 

  123. Fan H, Favero M, Vogel MW. Elimination of Bax expression in mice increases cerebellar Purkinje cell numbers but not the number of granule cells. J Comp Neurol 2001; 436: 82–91.

    Article  PubMed  CAS  Google Scholar 

  124. Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl -2 transgene. J Comp Neurol 1996; 374: 332–341.

    Article  PubMed  CAS  Google Scholar 

  125. Heckroth JA, Goldowitz D, Eisenman LM. Purkinje cell reduction in the reeler mutant mouse: A quantitative immunohistochemical study. J Comp Neurol 1989; 279: 546–555.

    Article  PubMed  CAS  Google Scholar 

  126. Herrup K, Mullen RJ. Role of the Staggerer gene in determining Purkinje cell number in the cerebellar cortex of mouse chimeras. Brain Res 1981; 227: 475–485.

    PubMed  CAS  Google Scholar 

  127. Baader SL, Sanlioglu S, Berrebi AS, Parker-Thornburg J, Oberdick J. Ectopic overexpression of engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions. J Neurosci 1998; 18: 1763–1773.

    PubMed  CAS  Google Scholar 

  128. Caddy KW, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci 1979; 287: 167–201.

    Google Scholar 

  129. Frederic F, Hainaut F, Thomasset M, Guenet JL, Delhaye-Bouchaud N, Mariani J. Cell counts of Purkinje and inferior olivary neurons in the 'Hyperspiny Purkinje Cells' mutant mouse. Eur J Neurosci 1992; 4: 127–135.

    Article  PubMed  Google Scholar 

  130. Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 1976; 73: 208–212.

    Article  PubMed  CAS  Google Scholar 

  131. Doulazmi M, Hadj-Sahraoui N, Frederic F, Mariani J. Diminishing Purkinje cell populations in the cerebella of aging heterozygous Purkinje cell degeneration but not heterozygous nervous mice. J Neurogenet 2002; 16: 111–123.

    Article  PubMed  Google Scholar 

  132. Sidman RL, Green MC. “Nervous,” a new mutant mouse with cerebellar disease. Coll Int Centre Natl Recherche Sci 1970; 924: 69–79.

    Google Scholar 

  133. Harada T, Pineda LL, Nakano A, Omura K, Zhou L, Iijima M, Yamasaki Y, Yokoyama M. Ataxia and male sterility (AMS) mouse. A new genetic variant exhibiting degeneration and loss of cerebellar Purkinje cells and spermatic cells. Pathol int Jun 2003; 53: 382–389.

    Google Scholar 

  134. Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 1985; 232: 117–128.

    Article  PubMed  CAS  Google Scholar 

  135. Zanjani H, Herrup K, Mariani J. Cell number in the inferior olive of nervous and leaner mutant mice. J Neurogenet 2004; 18: 327–339.

    Article  PubMed  Google Scholar 

  136. Duchala CS, Shick HE, Garcia J, Deweese DM, Sun X, Stewart VJ, Macklin WB. The toppler mouse: A novel mutant exhibiting loss of Purkinje cells. J Comp Neurol 2004; 476: 113–129.

    Article  PubMed  Google Scholar 

  137. Serajee FJ, Nabi R, Zhong H, Mahbubul Huq AH. Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: Implications for phosphatidylinositol signalling in autism. J Med Genet 2003; 40: e119.

    Article  PubMed  CAS  Google Scholar 

  138. Riikonen R, Makkonen I, Vanhala R, Turpeinen U, Kuikka J, Kokki H. Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Dev Med Child Neurol 2006; 48: 751–755.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Keller, F., Panteri, R., Biamonte, F. (2008). Interaction between Genetic Vulnerability and Neurosteroids in Purkinje cells as a Possible Neurobiological Mechanism in Autism Spectrum Disorders. In: Autism. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-489-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-489-0_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-488-3

  • Online ISBN: 978-1-60327-489-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics