Skip to main content

The Effects of Anesthetic Agents on Cardiac Function

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

With the aging population and an increase in health problems such as obesity, diabetes, and coronary artery disease, the perioperative management and induction of general anesthesia in such patients, while providing cardiovascular stability, continues to offer both challenges and new developments in this field. These developments include new anesthesia medications, medical equipment and/or surgical technology, and anesthetic and surgical techniques. The goal of this chapter is to familiarize the reader with commonly employed clinical methodologies and anesthetics, with particular attention to the potential influences on the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. ASA Standards, Guidelines and Statements. American Society of Anesthesiologists. October 2001.

    Google Scholar 

  2. Eger EI II. Uptake of inhaled anesthetics: The alveolar to impaired anesthetic difference. In: Eger EI II, ed. Anesthetic uptake and action. Baltimore, MD: Williams & Wilkins, 1974:77.

    Google Scholar 

  3. Stevens W, Cromwell T, Halsey M, et al. The cardiovascular effects of a new inhalation anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 1971;35:8–16.

    Article  PubMed  CAS  Google Scholar 

  4. Eger EI II, Smith N, Stoelting R. Cardiovascular effects of halothane in man. Anesthesiology 1970;32:396–409.

    Article  PubMed  Google Scholar 

  5. Weiskopf R, Cahalan M, Eger EI II, et al. Cardiovascular actions of desflurane in normocarbic volunteers. Anesth Analg 1991;73:143–56.

    PubMed  CAS  Google Scholar 

  6. Holaday D, Smith F. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology 1981;54:100–6.

    Article  PubMed  CAS  Google Scholar 

  7. Pavlin EG, Su JY. Cardiopulmonary pharmacology. In: Miller RD, ed. Anesthesia Philadelphia, PA: Churchill Livingstone, 1994:145.

    Google Scholar 

  8. Muzi M, Ebert TJ. A comparison of baroreflex sensitivity during isoflurane and desflurane anesthesia in humans. Anesthesiology 1995;82:919–25.

    Article  PubMed  CAS  Google Scholar 

  9. Duke PC, Townes D, Wade JG. Halothane depresses baroreflex control of heart rate in man. Anesthesiology 1977;46:184–7.

    Article  PubMed  CAS  Google Scholar 

  10. Korly KJ, Ebert TJ, Vucins E, et al. Baroreceptor reflex control of heart rate during isoflurane anesthesia in humans. Anesthesiology 1984;60:173–9.

    Article  Google Scholar 

  11. Atlee JL, Bosnjak ZJ. Mechanisms for cardiac dysrhythmias during anesthesia. Anesthesiology 1990;72:347–74.

    Article  PubMed  Google Scholar 

  12. Navarro R, Weiskopf RB, Moore MA, et al. Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology 1994;80:545–9.

    Article  PubMed  CAS  Google Scholar 

  13. Moore MA, Weiskopf RB, Eger EI, et al. Arrhythmogenic doses of epinephrine are similar during desflurane or isoflurane anesthesia in humans. Anesthesiology 1994;79:943–7.

    Article  Google Scholar 

  14. Johnston PR, Eger EI, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg 1976;55:709–12.

    Article  PubMed  CAS  Google Scholar 

  15. Crystal GJ, Khoury E, Gurevicius J, Salem MR. Direct effects of halothane on coronary blood flow, myocardial oxygen consumption, and myocardial segmental shortening in in situ canine hearts. Anesth Analg 1995;80:256–62.

    PubMed  CAS  Google Scholar 

  16. Crystal GJ, Salem MR. Isoflurane causes vasodilation in the coronary circulation. Anesthesiology 2003;98:1030.

    Article  PubMed  Google Scholar 

  17. Priebe H, Foex P. Isoflurane causes regional myocardial dysfunction in dogs with critical coronary artery stenoses. Anesthesiology 1987;66:293–300.

    Article  PubMed  CAS  Google Scholar 

  18. Cason BA, Verrier ED, London MJ, et al. Effects of isoflurane and halothane on coronary vascular resistance and collateral myocardial blood flow: Their capacity to induce coronary steal. Anesthesiology 1987;67:665–75.

    Article  PubMed  CAS  Google Scholar 

  19. Kersten JR, Brayer AP, Pagel PS, et al. Perfusion of ischemic myocardium during anesthesia with sevoflurane. Anesthesiology 1994;81:995–1004.

    Article  PubMed  CAS  Google Scholar 

  20. Eger E. New inhaled anesthetics. Anesthesiology 1994;80:906–22.

    Article  PubMed  CAS  Google Scholar 

  21. Pavlin EG, Su JY. Cardiopulmonary pharmacology. In: Miller RD, ed. Anesthesia. Philadelphia, PA: Churchill Livingstone, 1994:148.

    Google Scholar 

  22. Rivenes SM, Lewin MB, Stayer SA, et al. Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanyl-midazolam in children with congenital heart disease. Anesthesiology 2001;94:223–9.

    Article  PubMed  CAS  Google Scholar 

  23. Stoelting RK, ed. Pharmacology and physiology in anesthetic practice. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 1999.

    Google Scholar 

  24. Muzi M, Ebert TJ, Hope WG, et al. Site(s) mediating sympathetic activation with desflurane. Anesthesiology 1996;85:737–47.

    Article  PubMed  CAS  Google Scholar 

  25. Warltier DC, Wathiqui MH, Kampine JP, et al. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology 1988;69:552–65.

    Article  PubMed  CAS  Google Scholar 

  26. Marijic J, Stowe DF, Turner LA, et al. Differential protective effects of halothane and isoflurane against hypoxic and reoxygenation injury in the isolated guinea pig heart. Anesthesiology 1990;73:976–83.

    Article  PubMed  CAS  Google Scholar 

  27. Novalija E, Fujita S, Kampine JP, et al. Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts. Anesthesiology 1999;91:701–12.

    Article  PubMed  CAS  Google Scholar 

  28. Conzen PF, Fischer S, Detter C, et al. Sevoflurane provides greater protection of myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology 2003;99:826–33.

    Article  PubMed  CAS  Google Scholar 

  29. Murray CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–36.

    Article  Google Scholar 

  30. Zaugg M, Lucchinetti E, Spahn DR, et al. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathways. Anesthesiology 2002;97:4–14.

    Article  PubMed  CAS  Google Scholar 

  31. Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings with additional observation on krypton. Science 1951;1113:580–2.

    Article  Google Scholar 

  32. Rossaint R, Reyle-Hahn R, Schulte J, et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 2003;98:6–13.

    Article  PubMed  CAS  Google Scholar 

  33. Lachmann B, Armbruster S, Schairer W, et al. Safety and efficacy of xenon in routine use as an inhalational anesthetic. Lancet 1990;335:1413–5.

    Article  PubMed  CAS  Google Scholar 

  34. Luttrop HH, Romner B, Perhag L, et al. Left ventricular performance and cerebral hemodynamics during xenon anesthesia: A transesophageal echocardiography and transcranial Doppler sonography study. Anesthesia 1993;48:1045–9.

    Article  Google Scholar 

  35. Stowe DF, Rehmert GC, Wai-Meng K, et al. Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts of myocytes. Anesthesiology 2000;92:516–22.

    Article  PubMed  CAS  Google Scholar 

  36. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994;367:607–14.

    Article  PubMed  CAS  Google Scholar 

  37. Seltzer JL, Gerson JI, Allen FB. Comparison of the cardiovascular effects of bolus vs. incremental administration of thiopentone. Br J Anaesth 1980;52:527–9.

    Article  PubMed  CAS  Google Scholar 

  38. Sunzel M, Paalzow L, Berggren L, et al. Respiratory and cardiovascular effects in relation to plasma levels of midazolam and diazepam. Br J Clin Pharmacol 1988;25:561–9.

    PubMed  CAS  Google Scholar 

  39. McCammon RL, Hilgenberg JC, Stoelting RK. Hemodynamic effects of diazepam-nitrous oxide in patients with coronary artery disease. Anesth Analg 1980;59:438–41.

    Article  PubMed  CAS  Google Scholar 

  40. Hanouz, J, Yvon A, Guesne G, et al. The in vitro effects of remifentanil, sufentanil, fentanyl, and alfentanil on isolated human right atria. Anesth Analg 2001;93:543–9.

    Article  PubMed  CAS  Google Scholar 

  41. Kanaya N, Kahary DR, Murray PA, Damron DS. Differential effects of fentanyl and morphine on intracellular calcium transients and contraction in rate ventricular myocytes. Anesthesiology 1998;89:1532–42.

    Article  PubMed  CAS  Google Scholar 

  42. Waxman K, Shoemaker WC, Lippmann M. Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg 1980;58:355–8.

    Google Scholar 

  43. Robinson JF, Ebert TJ, O’Brien TJ, et al. Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology 1997;86:64–72.

    PubMed  CAS  Google Scholar 

  44. Bray RJ. Fatal myocardial failure associated with a propofol infusion in a child. Anaesthesia 1995;50:94.

    Article  PubMed  CAS  Google Scholar 

  45. Tramer MR, Moore RA, McQuay HJ. Propofol and bradycardia: Causation, frequency and severity. Br J Anasth 1997;78:642–51.

    CAS  Google Scholar 

  46. James MFM, Reyneke CJ, Whiffler K. Heart block following propofol: A case report. Br J Anaesth 1989;62:213–5.

    Article  PubMed  CAS  Google Scholar 

  47. Sprun J, Lgletree-Hughes ML, McConnell BK, et al. The effects of propofol on the contractility of failing and nonfailing human heart muscles. Anesth Analg 2001;93:550–9.

    Article  Google Scholar 

  48. Kissin I, Motomura S, Aultman DF, et al. Inotropic and anesthetic potencies of etomidate and thiopental in dogs. Anesth Analg 1983;62:961–5.

    Article  PubMed  CAS  Google Scholar 

  49. Fragen RJ, Shanks CA, Molteni A, et al. Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 1984;61:652–6.

    Article  PubMed  CAS  Google Scholar 

  50. Wagner RL, White PF, Kan PB, et al. Inhibition of adrenal steroidogenesis by anesthetic etomidate. N Engl J Med 1984;310:1415–21.

    Article  PubMed  CAS  Google Scholar 

  51. Ivankovich AD, Miletich DJ, Albrecht RF, et al. The effect of pancuronium on myocardial contraction and catecholamine metabolism. J Pharm Pharmacol 1975;27:837–41.

    Article  PubMed  CAS  Google Scholar 

  52. Domenech JS, Garcia RC, Sastain JMR, et al. Pancuronium bromide: An indirect sympathomimetic agent. Br J Anaesth 1976;48:1143–8.

    Article  PubMed  CAS  Google Scholar 

  53. Han JS. Physiologic and neurochemical basis of acupuncture analgesia. In: Cheng TO, ed. The international textbook of cardiology. New York, NY: Pergamon, 1986:1124–6.

    Google Scholar 

  54. Felhendler DPT, Lisander B. Pressure on acupoints decreases postoperative pain. Clin J Pain 1996;12:326–9.

    Article  PubMed  CAS  Google Scholar 

  55. Li P, Pitsillides KF, Rendig SV, et al. Reversal of reflex-induced myocardial ischemia by median nerve stimulation: A feline model of electroacupuncture. Circulation 1998;97:1186–94.

    PubMed  CAS  Google Scholar 

  56. Stein DJ, Birnbach DJ, Danzer BI, et al. Acupressure versus intravenous metoclopramide to prevent nausea and vomiting during spinal anesthesia for cesarean section. Anesth Analg 1997;84:342–5.

    PubMed  CAS  Google Scholar 

  57. Acupuncture. NIH Consensus Conference. JAMA 1998;280:1518–24.

    Article  Google Scholar 

  58. Sessler DI. Mild perioperative hypothermia. N Engl J Med 1997;336:1630–7.

    Article  Google Scholar 

  59. Hanouz J, Yvon A, Massetti M, et al. Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology 2002;97:33–41.

    Article  PubMed  CAS  Google Scholar 

  60. Kersten JR, Schmeling TJ, Hettrick DA, et al. Mechanism of myocardial protection by isoflurane: Role of adenosine triphosphate-regulated potassium (KATP) channels. Anesthesiology 1996;85:794–807.

    Article  PubMed  CAS  Google Scholar 

  61. Belhomme D, Peynet J, Louzy M, et al. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 1999;100:II340–4.

    PubMed  CAS  Google Scholar 

  62. De Hert S, ten Broeck P, Mertens E, et al. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 2002;97:42–9.

    Article  PubMed  Google Scholar 

  63. Sigg DC, Coles JA Jr, Gallagher WJ, Oeltgen PR, Iaizzo PA. Opioid preconditioning: Myocardial function and energy metabolism. Ann Thorac Surg 2001;72:1576–82.

    Article  PubMed  CAS  Google Scholar 

  64. Sigg DC, Coles JA Jr, Oeltgen PR, Iaizzo PA. Role of delta-opioid receptors in infarct size reduction in swine. Am J Physiol Heart Circ Physiol 2002;282:H1953–60.

    PubMed  CAS  Google Scholar 

  65. Hong J, Sigg DC, Upson K, Iaizzo PA. Role of ∂-opioid receptors in preventing ischemic damage of isolated porcine skeletal muscle. Biophys J 2002;82:610a (Abstract 2982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Loushin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnson, J.S., Loushin, M.K. (2009). The Effects of Anesthetic Agents on Cardiac Function. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics